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7 Post-Minkowskian theory: Implementation

The theory was formulated in Chapter 6, and now we must get our hands dirty with its
implementation. In this chapter we construct the second post-Minkowskian approximation
to the metric of a curved spacetime produced by a bounded distribution of matter. For
concreteness we choose the matter to consist of a perfect fluid. Our treatment allows the
fluid to be of one piece (in the case of a single body), or broken down into a number of
disconnected components (in the case of an N -body system).

Although the post-Minkowskian approximation does not require slow motion, we shall
nevertheless assume that the fluid is subjected to a slow-motion condition of the sort de-
scribed in Sec. 6.3.2: if vc is a characteristic velocity within the fluid, we insist that vc/c � 1.
This amounts to incorporating a post-Newtonian expansion within the post-Minkowskian
approximation. We do this for two reasons. First, our ultimate goal is to describe situa-
tions of astrophysical interest, and the virial theorem implies that U ∼ v2 for any gravi-
tationally bound system; weak fields are naturally accompanied by slow motion. Second,
any attempt to keep the velocities arbitrary in the post-Minkowskian expansion quickly
leads to calculations that are unmanageable, and we prefer to avoid these complications
here.

We begin in Sec. 7.1 by assembling the required tools and exploring the general structure
of the gravitational potentials in the near and wave zones. In Sec. 7.2 we perform the first
iteration of the relaxed field equations, and the outcome of this calculation is used as input
in the second iteration, carried out in Sec. 7.3 for the near zone, and in Sec. 7.4 for the wave
zone. Our main results are summarized in Boxes 7.5 and 7.7.

Before we proceed it is perhaps useful to recall the main results of the preceding
chapter. We saw that in the Landau–Lifshitz formulation of general relativity, the Ein-
stein field equations take the form of a wave equation for the gravitational potentials
hαβ := ηαβ − √−ggαβ , together with the harmonic-gauge condition ∂βhαβ = 0; this is
formally equivalent to the conservation equation ∂βταβ = 0 for the effective energy-
momentum pseudotensor, which acts as the source term in the wave equation. Each post-
Minkowskian iteration of the wave equation gives rise to a new expression for the source,
which is inserted back into the wave equation for the next iteration. After each iteration
hαβ is expressed as an integral of the source over the past light cone of the field point
(t, x). Because the support of ταβ is not limited to the matter distribution, the domain of
integration covers the entire light cone, and it is decomposed into a near-zone domain N

and a wave-zone domain W ; the gravitational potentials are expressed as hαβ = hαβ

N + hαβ

W .
The boundary between the near and wave zones is placed at an arbitrary radius r = R,
with R chosen to be of the same order of magnitude as a characteristic wavelength of the
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gravitational radiation; while hαβ

N and hαβ

W individually depend onR, their sum is guaranteed
to be independent of the cutoff radius, and this dependence can therefore be ignored.

And now onward with an explicit implementation of these ideas.

7.1 Assembling the tools

We begin by gathering the various tools, formulae, and assumptions that are required in
implementation of the post-Minkowskian expansion. Our discussion here will set the stage
for the various applications to come, to post-Newtonian theory (Chapters 8 to 10), to
gravitational waves (Chapter 11), and to gravitational radiation reaction (Chapter 12).

7.1.1 Fluid variables

A description of the laws of fluid mechanics in curved spacetime was presented in Sec. 5.3.
There we saw that the matter variables m that are relevant to a perfect fluid are the proper
mass density ρ, the proper internal energy density ε, the pressure p, and the velocity field
uα . The energy-momentum tensor of a perfect fluid is

T αβ = (ρ + ε/c2 + p/c2)uαuβ + pgαβ . (7.1)

The fluid dynamics is subjected to two conservation statements, a conservation of rest-
mass expressed by ∇α(ρuα) = 0, and a conservation of energy-momentum expressed by
∇β T αβ = 0.

For our purposes it is convenient to employ a slightly different set of matter variables.
Noting that the components of uα are not all independent (because of the normalization
condition gαβuαuβ = −c2), we express the four-velocity field as

uα = γ (c, v) , (7.2)

in terms of a three-velocity field v and a factor γ := u0/c that can be determined in terms
of v by the normalization condition. Making the substitution within the equation of mass
conservation, we find that it can be expressed in the form

∂tρ
∗ + ∂ j (ρ

∗v j ) = 0 , (7.3)

in terms of a rescaled mass density defined by

ρ∗ := √−gγρ = √−g ρ u0/c . (7.4)

To arrive at Eq. (7.3) we made use of the divergence identity of Eq. (5.40). Finally, we shall
use 
 := ε/ρ instead of ε; this is the fluid’s internal energy per unit mass. Our final set of
matter variables is therefore

m := {ρ∗, p,
, v} , (7.5)

and all other fluid variables can be determined in terms of this set.
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The continuity equation (7.3) plays an important role in the description of a perfect
fluid. We observe that unlike ∇β T αβ = 0, which constrains the dynamics of the fluid, the
statement of mass conservation is entirely kinematical in nature. Equation (7.3) states
that the rest-mass of a fluid element does not change as we follow its motion within the
fluid; this is tantamount to defining what one means by the phrase “fluid element,” and the
statement is indeed a piece of the kinematical description of the fluid. This is quite distinct,
for example, from the statement of the first law of thermodynamics, d
 − (p/ρ2) dρ = 0
(refer to Sec. 1.4.2), which is dynamical in nature.

We assume that the fluid is subjected to a slow-motion condition. Recalling the scaling
quantities introduced in Sec. 6.3.2, we have that rc is the radius of a sphere that surrounds
the matter distribution, tc is a characteristic time scale associated with the fluid motions,
vc = rc/tc is a characteristic velocity within the fluid, λc = ctc is a characteristic wavelength
of the gravitational radiation produced by the moving fluid, and mc is the characteristic mass
of the matter distribution. We demand that vc/c � 1, which implies that the fluid is situated
deep within the near zone: rc � λc.

The slow-motion condition gives rise to a hierarchy between the components of the
energy-momentum tensor. From Eq. (7.1) we have the approximate relations T 00 � ρ∗c2,
T 0 j � ρ∗v j c, and T jk � ρ∗v jvk + p δ jk , and these imply

T 0 j/T 00 ∼ vc/c , T jk/T 00 ∼ (vc/c)2 . (7.6)

A glance at Eq. (6.51) then reveals that this hierarchy is inherited by the gravitational
potentials:

h0 j/h00 ∼ vc/c , h jk/h00 ∼ (vc/c)2 . (7.7)

It is useful to express these relations more directly as

T 00 = O(c2) , T 0 j = O(c) , T jk = O(1) , (7.8)

and (taking into account the factor c−4 in the field equations)

h00 = O(c−2), h0 j = O(c−3), h jk = O(c−4), (7.9)

thereby introducing c−2 as a post-Newtonian expansion parameter. This notation serves as
a powerful mnemonic to judge the importance of various terms in a post-Newtonian expan-
sion. But it is a notational shortcut that must be used with care; it should be remembered, for
example, that a relation such as T jk = O(1) really stands for something more meaningful,
such as T jk/T 00 ∼ (vc/c)2.

7.1.2 General structure of the potentials: Near zone

Having introduced the matter variables, the slow-motion condition, and the post-Newtonian
hierarchy, we turn next to an examination of the general structure of the gravitational
potentials hαβ . These are determined by the relaxed field equations

�hαβ = −16πG

c4
ταβ, (7.10)
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in which

ταβ = (−g)
(
T αβ + tαβ

LL + tαβ

H

)
(7.11)

is the effective energy-momentum pseudotensor of Eq. (6.52). We decompose the potentials
as hαβ = hαβ

N + hαβ

W , and first examine them when the field point x is in the near zone,
where r := |x| < R.

Consulting Box 6.7, we see that hαβ

N can be expressed as the expansion

hαβ

N (t, x) = 4G

c4

∞∑
�=0

(−1)�

�!c�

(
∂

∂t

)� ∫
M

ταβ(t, x′)|x − x′|�−1 d3x ′ , (7.12)

in which M is a surface of constant time bounded externally by r ′ := |x′| = R. The first
few terms are

hαβ

N (t, x) = 4G

c4

[∫
M

ταβ(t, x′)
|x − x′| d3x ′ − 1

c

d

dt

∫
M

ταβ(t, x′) d3x ′

+ 1

2c2

∂2

∂t2

∫
M

ταβ(t, x′)|x − x′| d3x ′

− 1

6c3

∂3

∂t3

∫
M

ταβ(t, x′)(r2 − 2x · x′ + r ′2) d3x ′ + · · ·
]

, (7.13)

and we see that each successive term comes with an additional factor of c−1, signifying that
it is smaller than the previous term by a factor of order vc/c � 1. This is our first encounter
with a post-Newtonian expansion in powers of c−2, with fractional orders assigned to odd
powers of c−1.

The expansion of Eq. (7.13) is a direct consequence of the relaxed field equations. It
simplifies when we take into account the conservation statement ∂βταβ = 0 for the energy-
momentum pseudotensor. When we examine the expansion for h00

N , for example, we note
that the second term is given by − ∫

M ∂0τ
00 d3x ′. The conservation statement allows us

to make the substitution ∂0τ
00 = −∂ jτ

0 j inside the integral, which can then, by Gauss’s
theorem, be converted to a surface integral over ∂M , the boundary of the region M ; this
is the surface r ′ = R. The surface integral would vanish if τ 0 j were confined to the near
zone, and in this case the expansion for h00

N would skip the term at order c−1. In general,
however, τ 0 j extends beyond the near zone, and the surface integral does not vanish. But
since τ 0 j is constructed from the potentials, the surface integral can be estimated and shown
to be of a very high order in the post-Newtonian expansion, well beyond any order that we
will encounter in this book. In practice, therefore, we can appeal to energy conservation
and eliminate the second term in the expansion for h00

N .
In fact, the conservation equations ∂βταβ = 0 can be put to good use to simplify and

organize many terms in the expansion of hαβ

N . Particularly useful are a number of identities
that follow from the conservation equations, namely,

τ 0 j = ∂0
(
τ 00x j

) + ∂k

(
τ 0k x j

)
, (7.14a)

τ jk = 1

2
∂00

(
τ 00x j xk

) + 1

2
∂p

(
2τ p( j xk) − ∂qτ

pq x j xk
)
, (7.14b)

(continued overleaf)
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τ 0 j xk = 1

2
∂0

(
τ 00x j xk

) + τ 0[ j xk] + 1

2
∂p

(
τ 0px j xk

)
, (7.14c)

τ jk xn = 1

2
∂0

(
2τ 0( j xk)xn − τ 0n x j xk

)
+ 1

2
∂p

(
2τ p( j xk)xn − τ npx j xk

)
, (7.14d)

in which round and square brackets surrounding indices denote symmetrized and anti-
symmetrized combinations, respectively. Exploiting these identities, we find after some
manipulations that the various components of the gravitational potentials are now given by

h00
N = 4G

c2

{∫
M

c−2τ 00

|x − x′| d3x ′ + 1

2c2

∂2

∂t2

∫
M

c−2τ 00|x − x′| d3x ′

− 1

6c3

(3)

Ikk(t) + 1

24c4

∂4

∂t4

∫
M

c−2τ 00|x − x′|3 d3x ′

− 1

120c5

[
(4xk xl + 2r2δkl)

(5)

Ikl(t) − 4xk
(5)

Ikll(t) +
(5)

Ikkll(t)
]

+ O(c−6)

}
+ h00[∂M ] , (7.15a)

h0 j
N = 4G

c3

{∫
M

c−1τ 0 j

|x − x′| d3x ′ + 1

2c2

∂2

∂t2

∫
M

c−1τ 0 j |x − x′| d3x ′

+ 1

18c3

[
3xk

(4)

I jk(t) −
(4)

I jkk(t) + 2εmjk
(3)

J mk(t)
]

+ O(c−4)

}
+ h0 j [∂M ] , (7.15b)

h jk
N = 4G

c4

{∫
M

τ jk

|x − x′| d3x ′ − 1

2c

(3)

I jk(t) + 1

2c2

∂2

∂t2

∫
M

τ jk |x − x′| d3x ′

− 1

36c3

[
3r2

(5)

I jk(t) − 2xm
(5)

I jkm(t) − 8xn εmn( j
(4)

J m|k)(t) + 6
(3)

M jkmm(t)
]

+ O(c−4)

}
+ h jk[∂M ] , (7.15c)

in which ταβ is expressed as a function of t and x′ inside the integrals, a number within
brackets placed above a symbol such as I jk indicates the number of differentiations with
respect to time, and hαβ[∂M ] denotes the collected surface terms generated during our ma-
nipulations of the integrals (the details will not be displayed here). We have also introduced
the following notation for the multipole moments of the source ταβ :

IL (t) :=
∫

M
c−2τ 00(t, x)x L d3x , (7.16a)

J j L (t) := ε jab

∫
M

c−1τ 0b(t, x)xaL d3x , (7.16b)

M jkL :=
∫

M
τ jk(t, x)x L d3x , (7.16c)
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in which L is a multi-index containing a number � of individual indices, so that AL :=
A j1 j2... j� and x L := x j1 x j2 . . . x j� .

There is a lot to take in with the expansions of Eq. (7.15), and we shall now take the time
to describe the structure of h00

N in some detail. We begin with the first term on the right-hand
side of Eq. (7.15a), and observe that it leads off at order c−2 with a Newtonian-like potential
associated with the mass density c−2τ 00 ∼ ρ∗. Embedded within this term are corrections
of order (vc/c)2 and higher that enter the detailed expression for τ 00, as well as corrections
of order G and higher that arise in previous iterations of the relaxed field equations. But
the leading contribution gives rise to Newtonian gravity.

The integral that appears in the second term in h00
N is known as a superpotential, because

the factor |x − x′| appears in the numerator instead of the denominator; as we shall see, a
superpotential is a potential sourced by another potential. Because of the time derivatives,
this term leads off at order c−2 relative to the Newtonian term, or at overall order c−4 in h00

N ;
it is a “first post-Newtonian correction,” or 1pn correction, to the gravitational potential. It
also contains higher-order corrections coming from higher-order terms in c−2τ 00, just as
we saw previously for the leading-order, Newtonian term. It is instructive to note that the
superpotential itself is of order mcr , but since each time derivative produces a factor of
t−1
c = vc/rc, its contribution to h00

N is a factor of order (vc/c)2 smaller than the Newtonian
potential when r is comparable to rc.

The third term in h00
N involves three time derivatives of Ikk(t), the trace of the mass

quadrupole moment. The factor of c−3 in front indicates that this term is a factor of or-
der (vc/c)3 smaller than the leading, Newtonian term, and therefore represents a 1.5pn

contribution to the gravitational potential. We will show below that since this term de-
pends on t only, it can always be absorbed into a redefinition of the time coordinate, and
therefore be removed by a coordinate transformation. This observation suggests that the
1.5pn term does not play a physical role, and we shall have occasion to show that such is
indeed the case. The expression for the 1.5pn term displayed in Eq. (7.15a) is derived in
Box 7.1.

The integral that appears in the fourth term in h00
N is sometimes called a superduper-

potential because of the presence of |x − x′|3 in the numerator; a superduperpotential is a
potential sourced by a superpotential. Because of the time derivatives, this term leads off at
order c−4 relative to the Newtonian term, and therefore represents a 2pn correction to the
gravitational potential.

We now examine the fifth set of terms. The first member of the set involves the mass
quadrupole moment differentiated five times with respect to time, and it scales as

r2
c

c5

1

t5
c

mcr
2
c = (vc/c)5 mc

rc
, (7.17)

which is a correction of order (vc/c)5 relative to the Newtonian term. The other members
have the same scaling, and this group of terms give rise to a 2.5pn correction to the
gravitational potential. Unlike the 1.5pn term, this group depends on the spatial coordinates
in addition to time, and it cannot be removed by a coordinate transformation. It gives rise
to real, physical effects on the system. The nature of these effects can be anticipated
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from the fact that the 2.5pn terms involve an odd number of time derivatives, and are
therefore antisymmetric under a time reflection t → −t ; this is in contrast with the 1pn

and 2pn terms, which are symmetric under the time reflection. This property is associated
with dissipative processes taking place within the system, representing a radiative loss
of energy to gravitational waves. The 2.5pn contributions to the gravitational potentials
are known as radiation-reaction potentials, and their effects will be explored in detail in
Chapter 12.

Turning next to the other components of the gravitational potentials, we observe that they
have a very similar structure. The component h0 j

N leads off at order c−3 with a Newtonian-
like potential sourced by the mass-current density c−1τ 0 j ∼ ρ∗v j . Comparing this with the
leading term in h00

N , we see that it is smaller by a factor of order vc/c, and it would be
tempting to assign a 0.5pn label to this term. As we shall see below, however, all effects
arising from h0 j

N will be the result of a coupling with other quantities that also scale as
vc/c; the result is a 1pn correction to the leading, Newtonian effect. Keeping this context in
mind, it is appropriate to reset the post-Newtonian counter and to declare that the leading
term in h0 j

N makes a 1pn contribution to the gravitational potentials. The expansion of h0 j
N

continues with a superpotential term at order c−5 which is assigned a 2pn label, and this is
followed by 2.5pn contributions. The absence of a term at order c−4 is a consequence of
momentum conservation; the manipulations that led to the disappearance of the c−3 term
in h00

N lead to the same conclusion here, and in both cases we see that these terms are
absorbed in the surface integrals hαβ[∂M ].

And finally, the components h jk
N lead off at order c−4 with a Newtonian-like potential

sourced by τ jk ∼ ρ∗v jvk ; this is smaller than the leading term in h00
N by a factor of order

(vc/c)2 and represents a 1pn contribution to the gravitational potentials. The next term,
involving a single time derivative, does not vanish; use of Eqs. (7.14c) and (7.14d) converts
it to three time derivatives of the mass quadrupole moment. This term represents a 1.5pn

contribution, and it is followed by a superpotential term at 2pn order, and a set of 2.5pn

contributions.
The potentials hαβ

N provide the near-zone portion of the light-cone integral giving hαβ

in terms of ταβ , and we have yet to examine the wave-zone portion hαβ

W . We recall from
Box. 6.7 that this can be expressed as

hαβ

W (t, x) = 4G

c4

n〈L〉

r

{∫ R

R−r
ds f αβ(τ − 2s/c)A(s, r )

+
∫ ∞

R
ds f αβ(τ − 2s/c)B(s, r )

}
, (7.18)

when ταβ can be put in the specific form

ταβ = 1

4π

f αβ(τ )

rn
n〈L〉. (7.19)

Here τ = t − r/c is retarded time, n〈L〉 is an angular STF tensor of the sort introduced back
in Sec. 1.5.3, and the functions A(s, r ) and B(s, r ) are defined by Eq. (6.104). Although
restrictive, the expression of Eq. (7.18) is nevertheless useful because the wave-zone sources
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ταβ encountered below will always be decomposed in the elementary forms displayed in
Eq. (7.19); the complete hαβ

W can then be obtained by summing over these elementary
contributions.

Little more can be said about the general structure of hαβ

W in the near zone. The sources
f αβ vanish in the first iteration of the relaxed field equations, because we are instructed
to set hαβ = 0 in ταβ and the material source is confined to the near zone. In the second
and higher iterations, hαβ is no longer zero, and ταβ now extends into the wave zone; in
these cases we have no choice but to plow through the detailed calculations to see what
contribution hαβ

W might make. We encounter some of these calculations later in this chapter,
and then again in Chapter 11.

Box 7.1 Radiation-reaction terms in the potentials

To illustrate how the various radiation-reaction terms arise in the potentials, we examine the contribution

− 1

6c3

(
∂

∂t

)3 ∫
M

τ 00(t, x′)(r2 − 2x · x′ + r ′2) d3x ′

to h00
N ; this is the third line in Eq. (7.13). In the first term, r2 can be brought outside the inte-

gral, giving − 1
6 c−2r2∂2

t

∫
M ∂0τ

00 d3x ′ = 1
6 c−2r2∂2

t

∫
M ∂ jτ

0 j d3x ′, which becomes a sur-
face term, reflecting the fact that energy is conserved apart from a tiny flux of gravitational radiation.
In the second term, x can be brought outside the integral, giving 1

3 c−2x j∂2
t

∫
M ∂0τ

00x ′ j d3x ′ =
1
3 c−2x j∂2

t

∫
M τ 0 j d3x ′ plus a surface term. This yields− 1

3 c−1x j∂t

∫
M ∂kτ

k j d3x ′, which gives
another surface term. The elimination of this term reflects the conservation of momentum. The third term
survives, giving− 1

6 c−3
...
I kk as shown in Eq. (7.15a).

The next term in h00
N involving an odd number of time derivatives is

− 1

120c5

(
∂

∂t

)5 ∫
M

τ 00(t, x′)
[

r4 − 4r2x · x′ + 4(x · x′)2 + 2r2r ′2

− 4r ′2x · x′ + r ′4
]

d3x ′ .

The first two terms can be shown to become surface integrals by appealing to the conservation identities of
Eqs. (7.14), and the remaining four terms are displayed in Eq. (7.15a). Similar manipulations, albeit becoming
progressively more complicated, yield the corresponding terms displayed in Eqs. (7.15) for h0 j

N and h jk
N .

7.1.3 Near-zone metric

We will need to construct the spacetime metric gαβ from the gravitational potentials hαβ .
The link is provided by the gothic inverse metric gαβ = ηαβ − hαβ , which is related to the
inverse metric gαβ by gαβ = √−ggαβ . The inverse relation is gαβ = √−g gαβ , in which
gαβ is the matrix inverse to gαβ , and g := det[gαβ]. Given that hαβ is of order G, we can
solve these equations and obtain the metric and its inverse as post-Minkowskian expansions
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in powers of G, and express the results in terms of the potentials hαβ . We find

gαβ = ηαβ + hαβ − 1

2
hηαβ + hαμhμ

β − 1

2
hhαβ

+
(

1

8
h2 − 1

4
hμνhμν

)
ηαβ + O(G3), (7.20a)

gαβ = ηαβ − hαβ + 1

2
hηαβ − 1

2
hhαβ

+
(

1

8
h2 + 1

4
hμνhμν

)
ηαβ + O(G3), (7.20b)

(−g) = 1 − h + 1

2
h2 − 1

2
hμνhμν + O(G3), (7.20c)

√−g = 1 − 1

2
h + 1

8
h2 − 1

4
hμνhμν + O(G3). (7.20d)

It is understood that here, indices on hαβ are lowered with the Minkowski metric, so that
hαβ := ηαμηβνhμν and h := ημνhμν .

In practice, the construction of the metric from the potentials depends on the context,
which dictates the degree of accuracy required of each metric component. Suppose that we
are specifically interested in determining the geodesic motion of a slowly-moving particle
in the near zone of a weakly-curved spacetime. As we saw back in Sec. 5.2.3, the motion is
governed by a Lagrangian L given by

L = −mc

√
−gαβ

drα

dt

drβ

dt

= −mc2
√

−g00 − 2g0 jv j/c − g jkv jvk/c2, (7.21)

where rα = (ct, r) describes the particle’s position in spacetime, and v j = dr j/dt is its
three-dimensional velocity vector. Newtonian gravity is reproduced by inserting the approx-
imations g00 = −1 + 2U/c2 + O(c−4), g0 j = O(c−3), and g jk = δ jk + O(c−2) within the
Lagrangian, and expanding the square root to order c−2; this yields

L = −mc2 + 1

2
mv2 + mU + O(c−2), (7.22)

in which U is the Newtonian potential. The first term is an irrelevant constant, and we
indeed recognize 1

2 mv2 + mU as the Lagrangian of Newtonian gravity; the remaining
terms of order c−2 are 1pn corrections. This simple exercise teaches us that a contribution
of order c−2 to g00 is a Newtonian term, but that a term of order c−2 in g jk is actually a
post-Newtonian correction.

If we now want the post-Newtonian corrections to the motion, we must evaluate the
Lagrangian to order c−2, and this requires calculation of the metric to the following orders
of approximation:

O(c−4) for g00 ,

O(c−3) for g0 j ,

O(c−2) for g jk .
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In this case, a term of order c−4 in g00 gives rise to a post-Newtonian correction to the
Lagrangian. The same is true of a term of order c−3 in g0 j , because it multiplies v j/c in
the Lagrangian, making the combination a term of order c−4. And the same is also true of
a term of order c−2 in g jk , because it multiplies v jvk/c2 in the Lagrangian. Generalizing
the argument, we find that determination of the motion to npn order requires calculation of
the metric to the orders

O(c−2n−2) for g00 ,

O(c−2n−1) for g0 j ,

O(c−2n) for g jk ;

as usual the orders in c−1 descend because of the additional factors of v j/c in the Lagrangian.
Suppose next that we wish to determine the motion of a test body to 2.5pn order. The

previous discussion indicates that we need g00 to order c−7, g0 j to order c−6, and g jk to
order c−5. The metric is obtained from the potentials hαβ , and recalling from Eqs. (7.15)
that h00 leads off at order c−2, h0 j at order c−3, and h jk at order c−4, we find from Eq. (7.20)
that the appropriate expression is

g00 = −1 + 1

2
h00 − 3

8

(
h00

)2 + 5

16

(
h00

)3 + 1

2
hkk

(
1 − 1

2
h00

)
+ 1

2
h0 j h0 j

+ O(c−8) , (7.23a)

g0 j = −h0 j

(
1 − 1

2
h00

)
+ O(c−7) , (7.23b)

g jk = δ jk

[
1 + 1

2
h00 − 1

8

(
h00

)2
]

+ h jk − 1

2
δ jkhmm + O(c−6) , (7.23c)

(−g) = 1 + h00 − hkk + O(c−6) . (7.23d)

To arrive at these results we actually had to carry the expansion of Eq. (7.20) to the third
order in G, in order to capture the (h00)3 term in g00; this term is of order c−6, and it is
required for a complete expansion accurate through 2.5pn order.

Examining Eqs. (7.23), we begin to see how different orders in the post-Newtonian
expansion of hαβ contribute to the metric. Beginning with g00, we see from Eq. (7.15) that
h00 contributes at all orders, from Newtonian order (c−2) through 2.5pn order (c−7), that
h0 j contributes at 2pn order (c−6) only, and that h jk contributes at all orders beyond the
Newtonian order (c−4, c−5, c−6, and c−7). With g0 j we find that h00 contributes at 2pn order
(c−5) only, while h0 j contributes at 1pn, 2pn, and 2.5pn orders (c−3, c−5, and c−6). And
finally, with g jk we see that h00 contributes at 1pn, 2pn, and 2.5pn orders (c−2, c−4, and
c−5), while h jk contributes at 2pn and 2.5pn orders (c−4 and c−5).

We observe that each power of c−2 assigned to a contribution to gαβ translates to a
specific post-Newtonian order. The translation, however, depends on the context. When
the metric is examined in isolation, a term of order c−2 in g jk could be declared to be
of the same post-Newtonian order as a term of order c−2 in g00. But when the metric is
examined in the context of determining the motion of a slowly-moving particle, the c−2

term in g jk is appropriately declared to be a 1pn term, while the c−2 term in g00 is labeled
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as a Newtonian contribution. The translation is again different when the motion is highly
relativistic, with velocities v j approaching the speed of light. In this case the coupling of
the metric with powers of v j/c � 1 does not alter the post-Newtonian order, and a c−2 term
in g jk would again be declared to be a Newtonian contribution. Context is everything, and
it must be specified before a meaningful post-Newtonian order can be assigned to a given
expression.

Our considerations in this chapter, and the three chapters that follow, will be limited to
post-Newtonian gravity, in which corrections of 2pn order and higher are neglected. In this
1pn context our expansion for the metric can be truncated to

g00 = −1 + 1

2
h00 − 3

8

(
h00

)2 + 1

2
hkk + O(c−6) , (7.24a)

g0 j = −h0 j + O(c−5) , (7.24b)

g jk = δ j k

(
1 + 1

2
h00

)
+ O(c−4) , (7.24c)

(−g) = 1 + h00 + O(c−4) . (7.24d)

We return to the higher-order corrections in Chapter 12, when we study the effects of
gravitational reaction in the near zone. There we shall be interested in all 2.5pn terms in
the metric, those that scale as c−7 in g00, as c−6 in g0 j , and as c−5 in g jk . We shall see that
with suitable care, we can study these radiative effects independently of the 1pn or 2pn

influences.

7.1.4 General structure of the potentials: Wave zone

We proceed with an examination of the general structure of the gravitational potentials
when the field point x is in the wave zone, where r := |x| > R. Consulting Box 6.7 once
more, we see that we can express hαβ

N as the multipole expansion

hαβ

N (t, x) = 4G

c4

∞∑
�=0

(−1)�

�!
∂L

[
1

r

∫
M

ταβ(τ, x′)x ′L d3x ′
]

, (7.25)

in which τ := t − r/c is retarded time.
We first consider h00

N , and observe that the integral in Eq. (7.25) is just c2IL (τ ) as defined
by Eqs. (7.16); the multipole moments are now evaluated at retarded time τ instead of time
t . The first term (� = 0) in the series involves the monopole moment

M0 := I(τ ) =
∫

M
c−2τ 00(τ, x) d3x , (7.26)

and this represents the total mass contained within the near zone. Because of the conser-
vation equations, we know that its time derivative can be converted to a surface integral on
∂M , which can be shown to be small; the near-zone mass M0 is therefore constant to a
large degree of accuracy. The second term in the series involves

M0 R j
0 := I j (τ ) =

∫
M

c−2τ 00(τ, x)x j d3x , (7.27)

cmw
Sticky Note
superscript k is messed up, should be \delta_{jk} or \delta^{jk}
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where R j
0 is the center-of-mass position associated with the domain M . Its rate of change

is related to the near-zone momentum

P j
0 :=

∫
M

c−1τ 0 j (τ, x) d3x (7.28)

by the conservation statement

d

dτ

(
M0 R j

0

) = P j
0 + surface integral , (7.29)

and the momentum itself can be shown to satisfy

d P j
0

dτ
= 0 + surface integral . (7.30)

Because in each case the surface integral can be shown to be small, the total momentum
is conserved to a large degree of accuracy, and the center-of-mass moves according to
d(M0 R j

0 )/dτ = P j
0 . We may set P j

0 = 0 by working in the rest frame of the system, and set
R j

0 = 0 by placing the center-of-mass at the spatial origin of the harmonic coordinates; the
conservation equations ensure that R j

0 remains zero up to very small effects associated with
the radiation of linear momentum. Thus, h00

N consists of a static monopole piece plus time-
dependent terms involving the quadrupole moment I jk(τ ) and higher multipole moments.

Turning to h0 j
N , and making use of the conservation identities of Eqs. (7.14a) and

(7.14c), we can show that the � = 0 contribution to h0 j
N is of the form (4G/c3)r−1İ j

modulo surface terms; but since İ j = P j
0 + surface integral, we find that this vanishes by

virtue of our choice of reference frame. The � = 1 contribution involves
∫
M τ 0 j xk d3x ,

which according to Eq. (7.14c) can be converted to 1
2 (İ jk − εmjk J m

0 ), where

J m
0 := εmjk

∫
M

x j c−1τ 0k(τ, x) d3x (7.31)

is the angular momentum contained within the near zone. The conservation identities can
again be used to show that d J m

0 /dτ vanishes up to a surface integral, so that J0 is constant
except for a small radiative loss of angular momentum. Finally, looking at the � = 0 term in
h jk

N and using the identity of Eq. (7.14b), we find that we may convert it to (2G/c4)r−1Ï jk

modulo surface terms.
With these simplifications we obtain our final expression for hαβ

N in the wave zone:

h00
N = 4G M0

c2r
+ 4G

c2

∞∑
�=2

(−1)�

�!
∂L

[IL (τ )

r

]
, (7.32a)

h0 j
N = −2G

c3

(n × J0) j

r2
− 2G

c3
∂k

[ İ jk(τ )

r

]

+ 4G

c4

∞∑
�=2

(−1)�

�!
∂L

[
1

r

∫
M

τ 0 j (τ, x′)x ′L d3x ′
]

, (7.32b)

h jk
N = 2G

c4

Ï jk(τ )

r
+ 4G

c4

∞∑
�=1

(−1)�

�!
∂L

[
1

r

∫
M

τ jk(τ, x′)x ′L d3x ′
]

, (7.32c)

in which overdots indicate differentiation with respect to τ = t − r/c.
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Still according to Box 6.7, we see that the wave-zone contribution hαβ

W to the gravitational
potentials is given by

hαβ

W (t, x) = 4G

c4

n〈L〉

r

{∫ R

0
ds f αβ(τ − 2s/c)A(s, r ) +

∫ ∞

R
ds f αβ(τ − 2s/c)B(s, r )

}
,

(7.33)

when ταβ can be put in the specific form displayed in Eq. (7.19); the functions A(s, r ) and
B(s, r ) are defined by Eq. (6.104). We shall learn how to evaluate these contributions below
in Sec. 7.4, and then again in Chapter 11.

Box 7.2 Multipole structure of the wave-zonemetric

By using extensions of the conservation identities (7.14), the wave-zone forms of the potentials hαβ

N can be
expressed elegantly in terms of a sequence of multipole moments. The general expressions are

hαβ

N = 4G

c4

∞∑
�=0

(−1)�

�!
∂L

[
1

r
MαβL (τ )

]
,

where

M00L = c2IL ,

M0 j L = c

2(� + 1)

(
İ j L − �εmja1J ma2···a�

)
(sym a : L)

+ 1

(� + 1)

∮
∂M

τ 0m x j Ld Sm ,

M jkL = 1

(� + 1)(� + 2)
Ï jkL + 2

(� + 2)
εma1( j J̇ m|k)a2···a� (sym a : L)

+ 8(� − 1)

(� + 1)
P jk(a1a2···a�)

+ 1

(� + 1)(� + 2)

∮
∂M

[
τmn∂n(x jkL ) + ∂τ τ

0m x jkL
]

d Sm

− 2

(� + 2)

∮
∂M

[
τ n[a1 x j]ka2···a� + ( j � k)

]
d Sn (sym a : L),

whereIL andJ j L are defined in Eqs. (7.16), and

P jkabL :=
∫

M
x [aτ j][k xb]L d3x .

The notation (sym a : L)means symmetrize on all � a-indices.
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7.1.5 Toward two iterations of the field equations

As we pointed out back in Sec. 6.2.3, to achieve the second post-Minkowskian approxima-
tion to the gravitational potentials hαβ , we must carry out two iterations of the relaxed field
equations and then impose the gauge condition/conservation statement. In other words, we
must solve the wave equation �hαβ = −(16πG/c4)ταβ

1 for the potentials hαβ

2 and then im-
pose the gauge condition ∂βhαβ

2 = 0 or the conservation equation ∂βτ
αβ

1 = 0. The starting
point of these computations is construction of the effective energy-momentum pseudotensor
τ

αβ

1 , which depends on the fluid’s energy-momentum tensor T αβ and the potentials gener-
ated during the first iteration of the relaxed field equations. Our very first task, therefore, is
to perform the first iteration and obtain τ

αβ

1 .

7.2 First iteration

In this section we complete the first iteration of the relaxed field equations to obtain the
gravitational potentials hαβ

1 . Our goal is to perform the computation to a degree of accuracy
that is sufficient for the preparation of the second iteration, to be carried out in Secs. 7.3
and 7.4.

7.2.1 Energy-momentum tensor

In the first iteration of the field equations we replace gαβ by ηαβ in the energy-momentum
tensor of Eq. (7.1), and in the normalization condition for the velocity four-vector. Similarly,
we set

√−g = 1 in Eq. (7.4). We find that γ = (1 − v2/c2)−1/2 = 1 + 1
2 (v/c)2 + O(c−4),

and Eq. (7.4) becomes

ρ =
[

1 − 1

2
(v/c)2 + O(c−4)

]
ρ∗. (7.34)

The components of the energy-momentum tensor are then

c−2T 00
0 = ρ∗

[
1 + 1

c2

(
1

2
v2 + 


)
+ O(c−4)

]
, (7.35a)

c−1T 0 j
0 = ρ∗v j

[
1 + 1

c2

(
1

2
v2 + 
 + p/ρ∗

)
+ O(c−4)

]
, (7.35b)

T jk
0 = ρ∗v jvk + p δ jk + O(c−2). (7.35c)

They are written as post-Newtonian expansions in flat spacetime, and these include both
Newtonian and post-Newtonian contributions; terms occurring at 2pn order are neglected.
Because they do not yet include 1pn terms involving the gravitational potentials, which will
appear during the second iteration of the field equations, these post-Newtonian expansions
are incomplete.
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7.2.2 Near zone

We first take the field point x to be in the near zone, so that r < R. To achieve the first
iteration of the relaxed field equations, we set ταβ = T αβ

0 and make the substitution within
Eqs. (7.13). Because the energy-momentum tensor is confined to the near zone, there is no
need to truncate the integrals to the near-zone domain M ; they are naturally truncated to
the volume occupied by the matter distribution. And because T αβ

0 does not extend to the
wave zone, the potentials hαβ

W vanish, and hαβ = hαβ

N .
As we shall see below in Sec. 7.3, for the purposes of preparing the second iteration of the

field equations it is sufficient to compute h00
1 to order c−2, h0 j

1 to order c−3, and to neglect
h jk

1 because it is of order c−4. This requirement implies that we can truncate Eqs. (7.35) to

c−2T 00
0 = ρ∗ + O(c−2), (7.36a)

c−1T 0 j
0 = ρ∗v j + O(c−2), (7.36b)

T jk = O(1). (7.36c)

Making the substitution within Eq. (7.13) reveals that the potentials are given by

h00
1 = 4

c2
U + O(c−4), (7.37a)

h0 j
1 = 4

c3
U j + O(c−4), (7.37b)

h jk
1 = O(c−4), (7.37c)

in which U is a Newtonian potential defined by

U (t, x) = G

∫
ρ∗(t, x′)
|x − x′| d3x ′ , ∇2U = −4πGρ∗, (7.38)

in terms of the rescaled mass density ρ∗, and U j is a vector potential defined by

U j (t, x) = G

∫
ρ∗v j (t, x′)
|x − x′| d3x ′ , ∇2U j = −4πGρ∗v j , (7.39)

in terms of the mass-current density ρ∗v j . It is useful to note that by virtue of the continuity
equation (7.3), the potentials satisfy

∂tU + ∂ jU
j = 0 (7.40)

as a matter of identity.
Note that in Eq. (7.37), the corrections to h00

1 first occur at order c−4. The expansion of
Eq. (7.13), however, contains a term at order c−3 proportional to

d

dt

∫
ρ∗ d3x .

This vanishes because m := ∫
ρ∗ d3x , the total rest-mass within the fluid is conserved by

virtue of Eq. (7.3). As was pointed out back in Sec. 7.1.1, the conservation of rest-mass is
a basic kinematical requirement, quite divorced from any dynamical requirement based on
energy-momentum conservation. This is an important point, because we recall that we are



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-07 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 10:51

343 7.2 First iteration

not at liberty to impose the conservation equations ∂βταβ = 0 during the first iteration of
the relaxed field equations; for this we must await the second iteration. With this in mind,
you will notice that the corrections to h0 j

1 first occur at order c−4; this represents a term
proportional to

d

dt

∫
ρ∗v j d3x

in the expansion of Eq. (7.13). The integral is the total momentum at Newtonian order, and
it is tempting to declare that this term should vanish by virtue of momentum conservation.
This temptation, however, must be resisted during the first iteration.

The gravitational potentials may be inserted within Eqs. (7.24) to obtain the near-zone
metric. We obtain

g1
00 = −1 + 2

c2
U + O(c−4) , (7.41a)

g1
0 j = − 4

c3
U j + O(c−4) , (7.41b)

g1
jk =

(
1 + 2

c2
U

)
δ jk + O(c−4) , (7.41c)

and the metric determinant is (−g1) = 1 + 4U/c2 + O(c−4). Recalling our discussion in
Sec. 7.1.3, we see that this metric is not sufficiently accurate to obtain the motion of a
test particle at post-Newtonian order, because it lacks the O(c−4) contributions to g00. It is
sufficiently accurate, however, to serve as input in the second iteration of the relaxed field
equations.

7.2.3 Wave zone

We next take the field point x to be in the wave zone, so that r > R. To achieve the first
iteration of the relaxed field equations, we could in principle set ταβ = T αβ

0 , make the
substitution within Eqs. (7.25), and evaluate the multipole moments explicitly. There is,
however, no immediate need to proceed in this way. We can instead keep things simple by
making direct use of Eqs. (7.25) and keeping the multipole moments unevaluated until we
have completed the second iteration. An aspect of ταβ that we can incorporate is that it does
not extend beyond the near zone; this implies that hαβ

W vanishes, so that hαβ = hαβ

N .
As we shall see below in Sec. 7.4, only h00

1 is required in the preparation of the second
iteration. It is given by

h00
1 = 4G

c2

{I(τ )

r
− ∂ j

[I j (τ )

r

]
+ 1

2
∂ jk

[I jk(τ )

r

]
+ · · ·

}
, (7.42)

in whichIL (τ ) := ∫
M c−2τ 00(τ, x)x L d3x are the multipole moments of the density c−2τ 00,

expressed as functions of retarded time τ = t − r/c. Note that we keep the dipole-moment
term in the expansion, in spite of the fact that I j will eventually be set equal to zero by
a coordinate choice, as we indicated back in Sec. 7.1.4. The reason is that the ability to
set I j = 0 relies on the conservation equation ∂βταβ = 0, which we are not at liberty to
impose during the first iteration.
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Counting post-Newtonian orders is more subtle in the wave zone than it is in the near zone.
The monopole term on the right-hand side of Eq. (7.42) is evidently of order Gmc/(c2r ),
and we naturally assign a 0pn order to this term. To see about the dipole term, we perform
the differentiation and express it as

− 4G

c2
∂ j

[I j (τ )

r

]
= 4G

c2

( İ j

cr
+ I j

r2

)
n j , (7.43)

in which n j := x j/r . Noting that I j scales as mcrc, this term is of order

G

c2
mcrc

(
1

ctcr
+ 1

r2

)
= Gmc

c2r

rc

ctc

(
1 + ctc

r

)
. (7.44)

This is smaller than Gmc/(c2r ) by a factor of order (vc/c)(1 + λc/r ). The second factor is
of order unity in the wave zone, and we conclude that the dipole term is smaller than the
monopole term by a factor of order vc/c. To this term we therefore assign a 0.5pn order.
We do this in spite of the fact that the second term on the right of Eq. (7.43) is formally of
Newtonian order. In the near zone, but outside the distribution of matter, this term would
give the standard dipole contribution to the Newtonian potential, which normally would be
set equal to zero by a suitable choice of coordinates. But because it falls off as r−2 and
we are looking in the wave zone at distances r > λc = rc(c/vc), it has decreased in size to
such an extent that it is now comparable to (or even smaller than) the 0.5pn term produced
by the time derivative of I j .

A simple extension of this argument reveals that the quadrupole term in h00
1 must be

assigned a 1pn order. The octupole term, which would occur next in Eq. (7.42), gives a
contribution at 1.5pn order, and the post-Newtonian counting becomes clear: an �-pole
term contributes at (�/2)pn order to the gravitational potential.

7.3 Second iteration: Near zone

In this section we face the challenging task of completing the second iteration of the relaxed
field equations. Here we take the field point x to be in the near zone, so that r < R. The
wave zone will be considered next, in Sec. 7.4.

7.3.1 Effective energy momentum pseudotensor

Our first order of business is to use the potentials obtained in the first iteration to construct
the effective energy-momentum pseudotensor of Eq. (6.52),

ταβ = (−g)
(
T αβ + tαβ

LL + tαβ

H

)
, (7.45)

with the Landau–Lifshitz contribution defined by Eq. (6.5), and the harmonic contribution
defined by Eq. (6.53).

We begin by updating our expression for T αβ , the fluid’s energy-momentum tensor,
which was given an incomplete post-Newtonian expansion back in Eq. (7.35). We return
to Eq. (7.1) and substitute the near-zone metric displayed in Eq. (7.41). We also involve
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this metric in the normalization condition for uα , and update our expression for γ to 1 +
1
2 (v/c)2 + U/c2 + O(c−4), which now incorporates the Newtonian potential U . Equation
(7.34) becomes

ρ =
[

1 − 1

c2

(
1

2
v2 + 3U

)
+ O(c−4)

]
ρ∗, (7.46)

and the components of the energy-momentum tensor are now

c−2(−g)T 00
1 = ρ∗

[
1 + 1

c2

(
1

2
v2 + 3U + 


)
+ O(c−4)

]
, (7.47a)

c−1(−g)T 0 j
1 = ρ∗v j

[
1 + 1

c2

(
1

2
v2 + 3U + 
 + p/ρ∗

)
+ O(c−4)

]
, (7.47b)

(−g)T jk
1 = ρ∗v jvk + p δ jk + O(c−2). (7.47c)

We have multiplied T αβ

1 by (−g) because this is the combination that appears in ταβ .
The hardest piece of the calculation by far (and this is always true) is the computation of

(−g)tαβ

LL to the appropriate degree of accuracy. To match the accuracy achieved in Eqs. (7.47)
we need c−2(−g)t00

LL to orders O(1) and O(c−2), c−1(−g)t0 j
LL to order O(1) and O(c−2), and

(−g)t jk
LL to order O(1). To pluck out of Eq. (6.5) the terms of relevant orders, we use the

facts recorded in Eq. (7.9), that the potentials scale as h00 = O(c−2), h0 j = O(c−3), and
h jk = O(c−4). In addition, we use the property that ∂0h00 is of order c−1 relative to ∂ j h00.
The dominant piece of (−g)tαβ

LL will therefore come from ∂ j h00 = 4∂ jU/c2.
Armed with these observations, the reduction of (−g)tαβ

LL to something manageable is
well within reach. Let us, for example, examine the term

1

4

(
2gαλgβμ − gαβgλμ

)
gνρgστ ∂λhντ ∂μhρσ

on the right-hand side of Eq. (6.5), in which we have replaced gαβ by ηαβ − hαβ . A first
source of simplification arises from the fact that each occurrence of gαβ can be replaced by
ηαβ ; this comes about because each factor of hαβ contributes a power of G, and we need to
compute (−g)tαβ

LL to order G2 in the second post-Minkowskian approximation. A second
source of simplification comes from the fact that at leading order, we can retain terms that
involve ∂ j h00 only. At this stage the previous expression becomes

1

4

(
2ηα jηβk − ηαβδ jk

)
∂ j h

00∂kh00,

and it gives rise to a contribution 1
4∂ j h00∂ j h00 to (−g)t00

LL, and a contribution 1
2∂ j h00∂kh00 −

1
4δ jk∂nh00∂nh00 to (−g)t jk

LL; there is no contribution to (−g)t0 j
LL.

Keeping track of all terms that make up (−g)tαβ

LL , we eventually arrive at the expressions

16πG

c4
(−g)t00

LL = −7

8
∂ j h

00∂ j h00 + O(c−6), (7.48a)

16πG

c4
(−g)t0 j

LL = 3

4
∂ j h00∂0h00 + (

∂ j h0k − ∂kh0 j
)
∂kh00 + O(c−7), (7.48b)

16πG

c4
(−g)t jk

LL = 1

4
∂ j h00∂kh00 − 1

8
δ jk∂nh00∂nh00 + O(c−6). (7.48c)
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These results are sufficiently accurate for our immediate purposes. At a later stage, however,
we shall need additional accuracy in our expression for (−g)t jk

LL, and we record this improved
expression here:

16πG

c4
(−g)t jk

LL = 1

4

(
1 − 2h00

)
∂ j h00∂kh00 − 1

8
δ jk

(
1 − 2h00

)
∂nh00∂nh00

− ∂ j h0n∂kh0
n + ∂ j h0n∂nh0k + ∂kh0n∂nh0 j − ∂nh0 j∂nh0k

+ ∂ j h00∂0h0k + ∂kh00∂0h0 j + 1

4
∂ j h00∂khn

n + 1

4
∂kh00∂ j hn

n

+ δ jk

[
−3

8

(
∂0h00

)2 − ∂nh00∂0h0n − 1

4
∂nh00∂nh p

p

+ 1

2
∂nh0

p

(
∂nh0p − ∂ ph0n

)] + O(c−8). (7.49)

It should be noted that this incorporates corrections of order c−2 relative to the leading-order
expression of Eq. (7.48), and that to be consistent, we have terms such as h00∂ j h00∂kh00

that contain an additional power of the gravitational constant G.
With the substitutions of Eqs. (7.37), the Landau–Lifshitz pseudotensor becomes

c−2(−g)t00
LL = − 1

4πGc2

(
7

2
∂ jU∂ jU

)
+ O(c−4), (7.50a)

c−1(−g)t0 j
LL = 1

4πGc2

[
3∂tU∂ jU + 4

(
∂ jU k − ∂kU j

)
∂kU

]
+ O(c−4), (7.50b)

(−g)t jk
LL = 1

4πG

(
∂ jU∂kU − 1

2
δ jk∂nU∂nU

)
+ O(c−2). (7.50c)

To better understand the importance of these contributions to ταβ , we estimate the order
of magnitude of c−2(−g)t00

LL relative to ρ∗, the dominant contribution to c−2τ 00. We re-
introduce the scaling quantities mc, rc, and vc, and estimate the pseudotensor within the
matter distribution. We have that ρ∗ ∼ mc/r3

c and U ∼ Gmc/rc. After differentiation we
get ∂ jU ∼ Gmc/r2

c , and all this produces

(−g)t00
LL

ρ∗c2
∼ Gmc

c2rc
. (7.51)

Since motion within the fluid is governed by gravity, we can rely on the virial theorem and
claim that Gmc/rc ∼ v2

c . The end result is that c−2(−g)t00
LL is a quantity of order (vc/c)2

relative to ρ∗; it is comparable to the other 1pn terms that are displayed in Eq. (7.47).
The easiest piece of the calculation by far (and this is always true) is the computation

of (−g)tαβ

H to the required degree of accuracy. Using the information gathered previously,
Eq. (6.53) returns

16πG

c4
(−g)t00

H = O(c−6), (7.52a)

16πG

c4
(−g)t0 j

H = O(c−7), (7.52b)

16πG

c4
(−g)t jk

H = O(c−6). (7.52c)
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These expressions should be compared with Eqs. (7.48); they imply that the harmonic
pseudotensor makes no relevant contribution to ταβ . For later reference we record the
improved expression

16πG

c4
(−g)t jk

H = −h00∂00h jk + O(c−8) (7.53)

for the spatial components of the pseudotensor.
Collecting results, we have obtained

c−2τ 00
1 = ρ∗

[
1 + 1

c2

(
1

2
v2 + 3U + 


)]
− 1

4πGc2

(
7

2
∂ jU∂ jU

)
+ O(c−4), (7.54a)

c−1τ
0 j
1 = ρ∗v j

[
1 + 1

c2

(
1

2
v2 + 3U + 
 + p/ρ∗

)]

+ 1

4πGc2

[
3∂tU∂ jU + 4

(
∂ jU k − ∂kU j

)
∂kU

]
+ O(c−4), (7.54b)

τ
jk

1 = ρ∗v jvk + p δ jk + 1

4πG

(
∂ jU∂kU − 1

2
δ jk∂nU∂nU

)
+ O(c−2), (7.54c)

for the effective energy-momentum pseudotensor.

7.3.2 Energy-momentum conservation

At this stage of our development of the second post-Minkowskian approximation, we may
impose the conservation equations

c−2∂tτ
00
1 + c−1∂ jτ

0 j
1 = 0, c−1∂tτ

0 j
1 + ∂kτ

jk
1 = 0, (7.55)

before calculating the second-iterated potentials hαβ

2 . At leading order the energy equation
reproduces Eq. (7.3); not surprisingly, a statement of rest-mass conservation is included in
the statement of energy conservation. The equation brings additional information at order
c−2, a statement of energy conservation for all relevant forms of fluid energy: kinetic,
internal, and gravitational. We shall return to this theme below.

The momentum equation is equally informative. Using Eqs. (7.54), we have

c−1∂tτ
0 j
1 = (∂tρ

∗)v j + ρ∗∂tv
j + O(c−2)

= −v j∂k(ρ∗vk) + ρ∗ dv j

dt
− ρ∗vk∂kv

j + O(c−2), (7.56)

where we have involved Eq. (7.3) and the definition of the total time derivative: dv j/dt =
∂tv

j + vk∂kv
j . We also have

∂kτ
jk

1 = v j∂k(ρ∗vk) + ρ∗vk∂kv
j + ∂ j p + 1

4πG
(∂ jU )∇2U + O(c−2). (7.57)

Making the substitutions into Eq. (7.55), and replacing ∇2U by −4πGρ∗, we arrive at

ρ∗ dv j

dt
= ρ∗∂ jU − ∂ j p + O(c−2). (7.58)

This is Euler’s equation, which governs the dynamics of our perfect fluid at leading order
in a post-Newtonian expansion. It was first obtained on the basis of Newtonian theory in
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Chapter 1, and indeed, the foregoing computations have already been presented (in reverse
order) in Sec. 1.4.4.

Recalling our discussion of the iteration procedure in Sec. 6.2.3, we observe that
Euler’s equation (i.e. Newtonian gravity) is the consequence of ∂βτ

αβ

1 = 0, the conser-
vation equation that goes along with the second iteration of the relaxed field equations.
Performing a single iteration is not sufficient to produce this dynamics, because the equa-
tions of motion that are compatible with the first iteration, derived from the conservation
equation ∂βτ

αβ

0 = 0, do not contain gravitational interactions. This observation was also
made in the context of the linearized approximation to general relativity, back in Sec. 5.5.
So formally, a second iteration of the relaxed field equations is required to obtain the Newto-
nian equations of motion. Similarly, a third iteration is required to find the post-Newtonian
equations of motion, and so on. But as we also discussed back in Sec. 6.2.3, the conservation
equation compatible with the nth iteration requires ingredients that are collected during the
(n − 1)th iteration, and it can be formulated before completing the nth iteration to obtain
the gravitational potentials. In practice, therefore, we may obtain the Newtonian equations
of motion on the basis of the first-iterated potentials; the post-Newtonian equations on the
basis of the second-iterated potentials, and so on.

As we saw back in Sec. 6.1.4, the local conservation equations (7.55) imply the existence
of globally conserved quantities. From Eq. (6.36) we have the total mass

M := 1

c2

∫
(−g)

(
T 00 + t00

LL

)
d3x, (7.59)

and from Eq. (6.37) we have the total momentum

P j := 1

c

∫
(−g)

(
T 0 j + t0 j

LL

)
d3x . (7.60)

In addition, it is useful to re-introduce the vector

R j := 1

Mc2

∫
(−g)

(
T 00 + t00

LL

)
x j d3x, (7.61)

which denotes the position of the center-of-mass; this was first defined by Eq. (6.39). We
recall that R j is related to the total momentum by the equation Md R j/dt = P j , and that by
adopting the center-of-mass frame of the spacetime, we can set both P j and R j to zero. It
is worth pointing out that since (−g)tαβ

H makes no relevant contribution to τ
αβ

1 at this order,
as we saw back in Eq. (7.52), the conserved quantities associated with (−g)(T αβ + tαβ

LL ) are
the same as those associated with ταβ .

The global quantities M , P j , and R j are defined in terms of integrals that extend over
all space. We may still, however, evaluate them with the near-zone information available to
us now, because their expressions turn out to be insensitive to the wave-zone aspects of the
integrals. To evaluate M we insert our previous expression for c−2τ 00

1 within Eq. (7.59),
which we truncate to the near-zone domain M. The term involving U is handled as follows.
We write

∂ jU∂ jU = ∂ j

(
U∂ jU

) − U∇2U = ∂ j

(
U∂ jU

) + 4πGρ∗U (7.62)
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and observe that the first term gives rise to a surface integral that must be evaluated at
r = R; it makes an R-dependent contribution to M that cancels out when the wave-zone
portion of the integral is added to the near-zone portion. Collecting results, we arrive at

M =
∫

ρ∗
[

1 + 1

c2

(
1

2
v2 − 1

2
U + 


)]
d3x + O(c−4) (7.63)

for the total mass. The integral of ρ∗ is m, the total rest-mass of the fluid, which is separately
conserved. The integral of 1

2ρ∗v2 isT , the fluid’s total kinetic energy. The integral of − 1
2ρ∗U

is �, the gravitational potential energy. And finally, the integral of ρ∗
 = ε + O(c−2) is
Eint, the total internal energy stored within the fluid. The sum of T , �, and Eint is the
total energy E , and this was shown to be constant (by virtue of Euler’s equation and the
first law of thermodynamics) back in Sec. 1.4.3. The total mass can therefore be expressed
as M = m + E/c2 + O(c−4), and this equation possesses a clear interpretation: The total
mass of the spacetime is a measure of all forms of energy, including rest-mass, kinetic,
gravitational, and internal energies.

Similar manipulations reveal that R j can be expressed as

R j = 1

M

∫
ρ∗x j

[
1 + 1

c2

(
1

2
v2 − 1

2
U + 


)]
d3x + O(c−4), (7.64)

and Eq. (7.60) becomes

P j =
∫

ρ∗v j

[
1 + 1

c2

(
1

2
v2 − 1

2
U + 
 + p/ρ∗

)]
d3x

− 1

2c2

∫
ρ∗x j

(
∂tU − vk∂kU

)
d3x + O(c−4). (7.65)

The leading-order piece of the total momentum was shown to be constant (by virtue
of Euler’s equation) back in Sec. 1.4.3 of Chapter 1; with this improved expression the
momentum is conserved to order c−2.

It is instructive to examine the relationship between the total mass M , which is known
to correspond to the ADM mass of the spacetime, and the near-zone mass M0, defined by
Eq. (7.26),

M0 =
∫

M
c−2τ 00 d3x, (7.66)

which appears in the expression of Eq. (7.32) for h00 in the wave zone. It is easy to see that

M0 = M + O(c−4) . (7.67)

This follows because the integrands for M and M0 differ by (−g)t00
H , which makes no

contribution at 1pn order, and because the wave-zone portion of the integral defining M
makes no R-independent contribution to the mass. Examining the relationship at higher
post-Newtonian orders, we find that subtle differences between M0 and M appear at order
c−5; these are explored in Exercise 7.8.

Similar manipulations reveal that

R j
0 = R j + O(c−4) (7.68)
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and

P j
0 = P j + O(c−4), (7.69)

in which R j
0 is the position of the near-zone center-of-mass introduced in Eq. (7.27), and

P j
0 is the near-zone momentum introduced in Eq. (7.28). These equalities imply that at 1pn

order, a coordinate choice that enforces R j = 0 = P j also enforces R j
0 = 0 = P j

0 .

7.3.3 Near-zone contribution to potentials

Armed with Eq. (7.54) for τ
αβ

1 , we are now ready to solve the relaxed field equations for
the second-iterated potentials hαβ = hαβ

N + hαβ

W . In this section we focus on the near-zone
contribution hαβ

N , insert ταβ

1 within Eqs. (7.15), and express the results in a convenient form.
The spatial components h jk require special care, because as we have observed in Sec. 7.1.3,
the spatial trace hkk contributes to the spacetime metric at 1pn order, while the remaining
components contribute only at 2pn order. With this in mind, it is helpful to decompose the
potentials into a “scalar class” comprising h00 and hkk , a “vector class” comprising h0 j ,
and a “tensor class” comprising h jk .

Scalar class

We begin with the computation of h00 and hkk . Examining Eqs. (7.54), we observe that both
τ 00

1 and τ kk
1 contain a contribution proportional to ∂ jU∂ jU , which does not have compact

support. It is useful to re-express these terms by exploiting the identity

∇2U 2 = 2∂ jU∂ jU + 2U∇2U, (7.70)

in which we may insert Poisson’s equation ∇2U = −4πGρ∗. In this way we obtain

c−2τ 00
1 = ρ∗

[
1 + 1

c2

(
1

2
v2 − 1

2
U + 


)]
− 7

16πGc2
∇2U 2 + O(c−4) (7.71)

and

τ kk
1 = ρ∗

(
v2 − 1

2
U

)
+ 3p − 1

16πG
∇2U 2 + O(c−2) (7.72)

for the relevant components of the energy-momentum pseudotensor.
Consulting Eq. (7.15), we see that the leading terms in both h00

N and hkk
N are Poisson

integrals constructed from c−2τ 00 and τ kk . To evaluate these we must distinguish between
the pieces of the source functions that have compact support (those that are tied to the fluid
variables), and those that depend on the Newtonian potential and extend beyond the matter
distribution. To handle the compact-support pieces we introduce the potentials

ψ(t, x) := G

∫
ρ∗′( 3

2v′2 − U ′ + 
′) + 3p′

|x − x′| d3x ′ , (7.73a)

V (t, x) := G

∫
ρ∗′(v′2 − 1

2U ′) + 3p′

|x − x′| d3x ′ , (7.73b)
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in which primed quantities such as ρ∗′ indicate that the fluid variables are expressed as
functions of t and x′. These satisfy the Poisson equations

∇2ψ = −4πGρ∗
(

3

2
v2 − U + 
 + 3p/ρ∗

)
, (7.74a)

∇2V = −4πGρ∗
(

v2 − 1

2
U + 3p/ρ∗

)
. (7.74b)

With this notation we see that at leading order, the compact-support piece of h00
N is given

by 4U/c2 + 4(ψ − V )/c4, while the compact-support piece of hkk
N is 4V/c4; this choice of

notation is motivated by the fact that once the potentials are inserted within the near-zone
metric of Eq. (7.24), the leading-order, compact-support piece of g00 will involve only U
and ψ .

Turning next to the Poisson integral involving ∇2U 2, we evaluate it by making repeated
use of integration by parts:

1

4π

∫
M

∇′2U ′2

|x − x′| d3x ′ = 1

4π

∮
∂M

∂ ′ jU ′2

|x − x′| d S′
j − 1

4π

∫
M

∂ ′ jU ′2∂ ′
j

1

|x − x′| d3x ′

= 1

4π

∮
∂M

(
∂ ′ jU ′2

|x − x′| − U ′2∂ ′
j

1

|x − x′|
)

d S′
j

+ 1

4π

∫
M

U ′2∇′2 1

|x − x′| d3x ′

= −U 2 + 1

4π

∮
∂M

(
∂ ′ jU ′2

|x − x′| − U ′2∂ ′
j

1

|x − x′|
)

d S′
j . (7.75)

The surface term is evaluated at r ′ = R, and because U ′ falls off as (r ′)−1 at large distances
from the matter distribution, it makes a contribution that scales as R−2. As with all R-
dependent terms in the potentials hαβ

N , we may discard it because it will eventually be
cancelled by an equal and opposite term in hαβ

W .
It is interesting to note that if the Poisson integral of ∇2U 2 were extended to infinity

instead of being truncated to the domain M , it would be exactly equal to −U 2. This may
seem like a trivial observation, but we wish to call attention to the fact that the solution
to the differential equation ∇2 f = ∇2g is not necessarily the obvious f = g. The actual
solution may also include a solution to Laplace’s equation ∇2 f = 0, and the correct mixture
of particular and homogeneous solutions depends on the boundary conditions captured by
the surface integral in Eq. (7.75). When the boundary conditions are such that the surface
integral vanishes except for R-dependent terms, the particular solution f = g is justified.
When, however, the surface integral returns contributions that are independent of R, the
relevant solution is no longer the simple f = g.

We have now taken care of the leading-order, Poisson-integral terms in Eq. (7.15).
Proceeding to the next order in h00

N , we examine the superpotential term, in which we
may insert the leading-order expression c−2τ 00

1 = ρ∗ + O(c−2), because the correction at
order c−2 would contribute to h00

N at order c−6. This gives rise to the post-Newtonian
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superpotential

X (t, x) := G

∫
ρ∗(t, x′)|x − x′| d3x ′ , (7.76)

in which the integral over M is naturally truncated to the volume occupied by the matter
distribution. With this notation we observe that the superpotential term in h00

N is propor-
tional to ∂2

t X . Since ∇2|x − x′| = 2|x − x′|−1 when x = x′, we see that the superpotential
satisfies the Poisson equation

∇2 X = 2U , (7.77)

and X is therefore sourced by the Newtonian potential. The connection between Eqs. (7.76)
and (7.77) is further explored in Box 7.3.

Collecting results, we have obtained the following expressions for the scalar potentials
h00

N and hkk
N :

h00
2N = 4

c2
U + 1

c4

(
7U 2 + 4ψ − 4V + 2

∂2 X

∂t2

)
− 2G

3c5

...
I kk(t) + O(c−6) , (7.78a)

hkk
2N = 1

c4

(
U 2 + 4V

)
− 2

G

c5

...
I kk(t) + O(c−6) . (7.78b)

These expressions are accurate up to order c−6, and they incorporate Newtonian, 1pn, and
1.5pn terms. Once we have obtained the spacetime metric from the potentials, the terms
of order c−5 will be shown to represent coordinate artifacts that can be removed by a
coordinate transformation.

Box 7.3 Definition of the superpotential

Thepost-Newtonian superpotential X is definedbyEq. (7.76), and this leads to thePoissonequationdisplayed
in Eq. (7.77). Here we ask whether defining the superpotential through

∇2 X = 2U

necessarily leads back to the integral representation of Eq. (7.76). We shall see that the answer to this ques-
tion is subtle, and provides further illustration of the fact that boundary conditions and solutions to Laplace’s
equation sometimes play an important role in solving Poisson’s equation.
The general solution to Poisson’s equation for the superpotential is

X (t, x) = − 1

2π

∫
U (t, x′)
|x − x′| d3x ′ + X0(t, x),

inwhich X0 is a solution to∇2 X0 = 0. But the integral is ill defined; becauseU falls off as (r ′)−1 at large
distances, the integrand behaves as (r ′)−2, and since it ismultiplied by the integrationmeasurer ′2 dr ′, the
integral is linearly divergent. To provide a well-defined prescription for the Poisson integral, we truncate the
domain of integration toM . This amounts tomodifying thePoisson equation to∇2 X = 2U�(R − r ),
in which� is the Heaviside step function; the modification produces no noticeable changes in the near zone.
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Inserting the standard expression of Eq. (7.38) for the Newtonian potential, we find that the superpotential
can be expressed as

X (t, x) = G

∫
ρ∗(t, y)K (x; y) d3 y + X0(t, x),

in which the two-point function K (x; y) is defined by

K (x; y) := − 1

2π

∫
M

d3x ′

|x − x′||x′ − y| .

To evaluate this we exploit the observation that K can depend on x and y only through the combination
x − y, and thereby set y = 0 to simplify the integral. Making use of the addition theorem for spherical
harmonics, we find that K (x; 0) = −2

∫ R
0 (r>)−1r ′ dr ′, in which r> is the greater of r and r ′. This

returns r − 2R, and we conclude that the two-point function is given by

K (x; y) = |x − y| − 2R.

Inserting this within the integral for the superpotential, we obtain

X (t, x) = G

∫
ρ∗(t, x′)|x − x′| d3x ′ − 2mR + X0(t, x),

with m := ∫
ρ∗(t, x′) d3x ′ denoting the total rest-mass of the matter distribution. Choosing X0 =

2mR, we reproduce the original definition of the superpotential.
It is interesting to note that since it is ∂2

t X that appears in the gravitational potentials, the addition of
−2mR + X0 to the integral is immaterial, so long as X0 does not depend on time. The superpoten-
tial, therefore, is sufficiently robust to withstand the ambiguities associated with the choice of solution to
∇2 X = 2U .

Vector class

For our purposes it is necessary to evaluate the potential h0 j
N to order c−3 only. Our

expression for c−1τ
0 j
1 in Eq. (7.54b) is more accurate than we need, and we may truncate it

to its leading term ρ∗v j + O(c−2). Consulting Eq. (7.15b), we see that the leading term in
the potential is given by a Poisson integral constructed from c−1τ

0 j
1 , and we obtain

h0 j
2N = 4

c3
U j + O(c−5) , (7.79)

where U j is the vector potential defined by Eq. (7.39). In principle we have enough
information to calculate the correction terms at order c−5, but these will not be needed in
our future developments.

Tensor class

The computation of h jk
N is more involved, because its source term contains a field con-

tribution that is not as easy to deal with as it was with the scalar potentials. Returning

cmw
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cmw
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to Eq. (7.54) and exploiting once more the identity of Eq. (7.70), we express τ
jk

1 in the
form

τ
jk

1 = ρ∗
(

v jvk − 1

2
Uδ jk

)
+ p δ jk − 1

16πG
δ jk∇2U 2 + 1

4πG
∂ jU∂kU + O(c−2) .

(7.80)

Consulting Eq. (7.15c), we see that the leading term in the potential is a Poisson integral
constructed from τ

jk
1 . The first three terms have compact support, and they give rise to the

tensorial potential

W jk(t, x) := G

∫
ρ∗′(v′ jv′k − 1

2U ′δ jk
) + p′δ jk

|x − x′| d3x ′ , (7.81)

which satisfies the Poisson equation

∇2W jk = −4πG

(
ρ∗v jvk − 1

2
ρ∗Uδ jk + p δ jk

)
. (7.82)

The fourth term involves ∇2U 2, which we know how to handle, and which produces a
contribution proportional to δ jkU 2 to h jk

N . The fifth and final term is the hard one. To
account for it we introduce another tensorial potential defined by

χ jk(t, x) := 1

4π

∫
M

∂ j ′
U ′∂k ′

U ′

|x − x′| d3x ′ , (7.83)

which satisfies the Poisson equation

∇2χ jk = −∂ jU∂kU . (7.84)

Because the Poisson integral in Eq. (7.83) is truncated at r ′ = R, the source term on the
right-hand side of the Poisson equation should be multiplied by �(R − r ), as was discussed
in Box 7.3. But since the truncation produces no noticeable changes within the near zone,
we have kept it implicit in Eq. (7.84).

Armed with these tensorial potentials, we find that the gravitational potentials can be
expressed as

h jk
2N = 1

c4

(
4W jk + U 2δ jk + 4χ jk

)
− 2

G

c5

...
I jk(t) + O(c−6) , (7.85)

where we have included the O(c−5) term for completeness.

Computation ofχ jk

We must now face the computation of χ jk , as defined by Eq. (7.83). Returning to the
standard expression of Eq. (7.38) for the Newtonian potential, we differentiate it and obtain

∂ j ′U ′ = G

∫
d3 y1 ρ∗

1

∂

∂x ′ j

1

|x′ − y1|
= −G

∫
d3 y1 ρ∗

1

∂

∂y j
1

1

|x′ − y1| , (7.86)
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in which y1 is an integration variable, and ρ∗
1 := ρ∗(t, y1). Expressing ∂k ′U ′ in a similar

way, in terms of an independent integration variable y2, and inserting these expressions in
the Poisson integral for χ jk , we arrive at

χ jk = G2
∫

d3 y1d3 y2 ρ∗
1ρ∗

2

∂2

∂y j
1 ∂yk

2

K (x; y1, y2) , (7.87)

where

K (x; y1, y2) := 1

4π

∫
M

d3x ′

|x − x′||x′ − y1||x′ − y2| (7.88)

is a three-point function that must now be evaluated. This computation is presented in
Box 7.4, and the end result is

K (x; y1, y2) = 1 − ln
S

2R , (7.89)

where

S := r1 + r2 + r12 , (7.90)

with the notations

r1 := |x − y1| , r2 := |x − y2| , r12 := | y1 − y2| . (7.91)

We also introduce the corresponding separation vectors

r1 := x − y1 , r2 := x − y2 , r12 := y1 − y2 , (7.92)

and the unit vectors

n1 := r1

r1
, n2 := r2

r2
, n12 := r12

r12
. (7.93)

The dependence of K on R comes from the fact that the domain of integration is truncated
at r ′ = R. This dependence plays no role, however, because K is differentiated as soon as
it is inserted within Eq. (7.87). These derivatives are straightforward to compute, and we
obtain

∂2 K

∂y j
1 ∂yk

2

=
(
n j

1 − n j
12

)(
nk

2 + nk
12

)
S2

− n j
12nk

12 − δ jk

Sr12
. (7.94)

We then arrive at

χ jk = G2
∫

ρ∗
1ρ∗

2

(
n j

1 − n j
12

)(
nk

2 + nk
12

)
S2

d3 y1d3 y2

− G2
∫

ρ∗
1ρ∗

2

(
n j

12nk
12 − δ jk

)
Sr12

d3 y1d3 y2 . (7.95)

It is easy to check that each integral is symmetric in the jk indices; this property is evident
in the second integral, and to establish it for the first it is necessary to swap the variables of
integration, y1 ↔ y2, keeping in mind that n12 → n21 = −n12 under this operation.
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Note that the trace χ := δ jkχ
jk is given by the Poisson potential of 1

2∂ jU∂ jU . Using the
identity of Eq. (7.70), it is easy to see that χ can be expressed as

χ = −1

2
U 2 + G

∫
M

ρ ′∗U ′

|x − x′|d3x ′ . (7.96)

By inserting the Poisson integral for U , we can express this in the form

χ = −1

2
G2

∫
ρ∗

1ρ∗
2 d3 y1d3 y2

|x − y1||x − y2| + G2
∫

ρ∗
1ρ∗

2 d3 y1d3 y2

|x − y1|| y1 − y2| . (7.97)

The second integral can be written in the symmetric form

1

2

∫
ρ∗

1ρ∗
2 d3 y1d3 y2

|x − y1|| y1 − y2| + 1

2

∫
ρ∗

1ρ∗
2 d3 y1d3 y2

|x − y2|| y1 − y2| ,

and this gives

χ = 1

2
G2

∫
ρ∗

1ρ∗
2

(
− 1

r1r2
+ 1

r1r12
+ 1

r2r12

)
d3 y1d3 y2 . (7.98)

Our final expression is

χ = 1

2
G2

∫
ρ∗

1ρ∗
2

r1 + r2 − r12

r1r2r12
d3 y1d3 y2 , (7.99)

and we may check that the trace of Eq. (7.95) reproduces this. The calculation is aided by
the identities

n1 · n2 = r2
1 + r2

2 − r2
12

2r1r2
, (7.100a)

n1 · n12 = r2
2 − r2

1 − r2
12

2r1r12
, (7.100b)

n2 · n12 = r2
2 − r2

1 + r2
12

2r2r12
, (7.100c)

involving the unit vectors defined by Eq. (7.93).

Box 7.4 Three-point function K (x; y1, y2)

The computation of the three-point function defined by Eq. (7.88) follows some of the same steps that were
used to calculate the two-point function K (x; y) in Box 7.3.
We note first that K (x; y1, y2) satisfies

∇2 K (x; y1, y2) = − 1

|x − y1||x − y2| , (1)

and verify that Kp = − ln S is a particular solution. The relation implies that

∇2 Kp = − 1

S2
(S∇2S − ∂ j S∂ j S),
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and the various derivatives can be computed from the definition of S provided in Eq. (7.90). We have, for
example, ∂ j S = n j

1 + n j
2 , from which it follows that

∂ jk S = −n j
1nk

1 − δ jk

r1
− n j

2nk
2 − δ jk

r2
.

From this, and the helpful identities of Eqs. (7.100), we obtain

∇2S = 2
r1 + r2

r1r2
, ∂ j S∂ j S = (r1 + r2 − r12)S

r1r2
.

Collecting results, we confirm that Kp is a solution to∇2 K = −1/(r1r2).
To this wemust add a suitable solution Kh to Laplace’s equation. The solution to the homogeneous equa-

tion must be non-singular in all three variables x, y1, and y2, because the singularity structure required
by Eq. (1) is already contained in Kp. Furthermore, Kh must be dimensionless, and the only possibility is to
make it equal to a constant. We are therefore looking for a solution of the form

K = K0 − ln(r1 + r2 + r12),

where K0 is a dimensionless constant. To determine this we carry out an independent computation of
the special value K (x; 0, 0), and compare our result to K0 − ln(2r ), which follows from the general
expression.
From Eq. (7.88) we have

K (x; 0, 0) = 1

4π

∫
M

d3x ′

|x − x′||x′|2 = 1

4π

∫ R

0

dr ′d�′

|x − x′| .

Invoking the addition theorem for spherical harmonics, this is simply
∫ R

0 (r>)−1 dr ′, and evaluating
the integral gives K (x; 0, 0) = 1 + ln(R/r ). This allows us to conclude that K0 = 1 + ln(2R).
Collecting results, we obtain the expression displayed in Eq. (7.89).

7.3.4 Wave-zone contribution to potentials

In this subsection we estimate hαβ

W , the wave-zone contribution to the second-iterated
potentials, still assuming that the field point x is within the near zone. Techniques to
carry out such a computation were described back in Sec. 6.3.5, and crude estimates were
obtained toward the end of that section. These ignore numerical factors and terms that
depend explicitly on R, but they are sufficient to allow us to conclude that

h00
W = O(c−8) , h0 j

W = O(c−8) , h jk
W = O(c−8) . (7.101)

This is far beyond the 1pn accuracy of our calculations in this section, and we shall therefore
ignore the wave-zone contribution to hαβ

2 .
To reach this conclusion we refer to Eq. (6.105), which applies to source terms of the

form displayed in Eq. (6.98). In our current application, τ
αβ

1 is built entirely from (−g)tαβ

LL
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as displayed in Eqs. (7.48), by inserting the wave-zone potentials h00
1 and h0 j

1 given by
Eqs. (7.32). Focusing our attention on τ 00

1 for concreteness, and ignoring all numerical and
angle-dependent factors, we find that it has a structure given schematically by

G2

c4

[
M2

0

r4
+ M0I jk

r6
+ M0İ jk

cr5
+ M0Ï jk

c2r4
+ M0

...
I jk

c3r3
+ · · ·

]
, (7.102)

in which the ellipsis designates terms of higher post-Newtonian order. Each term is of the
form f (τ )/rn required for the integration techniques of Sec. 6.3.5. Ignoring the overall
factor of G2/c4, we see, for example, that for n = 3 we have f = M0

...
I jk

/c3, and that for
n = 4 we have f = M2

0 + M0Ï jk/c2. According to Eq. (6.109), an estimate of h00
W for each

contributing n is c−(n−2) f (n−2) + c−(n−1)r f (n−1). The dominant term in a post-Newtonian
expansion is c−(n−2) f (n−2), and restoring the factor of G2/c4, we find that for each n, h00

W

is estimated as

G2 M0

c8

d4I jk

dτ 4
. (7.103)

This is of order c−8, and contributes to h00
2 at 3pn order. A similar result follows for the

other components of hαβ

W , and we arrive at the statement of Eq. (7.101).
In fact, a detailed computation shows that these contributions are actually gauge artifacts

that can be removed by a suitable coordinate transformation. The first instance in which hαβ

W

makes a non-trivial contribution to the near-zone potentials turns out to be at 4pn order. In
any event, we see that hαβ

W is far too small to contribute to our 1pn potentials, and for this
reason we do not need to calculate it in detail.

7.3.5 Near-zone potentials: Final answer

We are now ready to collect our results and display the final expression for the second-
iterated potentials hαβ

2 in the near zone. Our results are summarized in Box 7.5.

Box 7.5 Near-zone potentials

Combining Eqs. (7.78), (7.79), (7.85), and (7.101),wefind that thenear-zonegravitational potentials are given
by

h00
2 = 4

c2
U + 1

c4

(
7U 2 + 4ψ − 4V + 2

∂2 X

∂t2

)
− 2G

3c5

...
I kk(t) + O(c−6) ,

h0 j
2 = 4

c3
U j + O(c−5) ,

h jk
2 = 1

c4

(
4W jk + U 2δ jk + 4χ jk

)
− 2

G

c5

...
I jk(t) + O(c−6) ,

hkk
2 = 1

c4

(
U 2 + 4V

)
− 2G

c5

...
I kk(t) + O(c−6) .
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The potentials that make up hαβ satisfy the Poisson equations

∇2U = −4πGρ∗ ,

∇2ψ = −4πGρ∗
(

3

2
v2 − U + 
 + 3p/ρ∗

)
,

∇2V = −4πGρ∗
(

v2 − 1

2
U + 3p/ρ∗

)
,

∇2 X = 2U ,

∇2U j = −4πGρ∗v j ,

∇2W jk = −4πG

(
ρ∗v jvk − 1

2
ρ∗Uδ jk + pδ jk

)
,

∇2χ jk = −∂ jU∂kU .

The solutions are

U = G

∫
ρ∗′

|x − x′| d3x ′ ,

ψ = G

∫
ρ∗′( 3

2v′2 − U ′ + 
′) + 3p′

|x − x′| d3x ′ ,

V = G

∫
ρ∗′(v′2 − 1

2U ′) + 3p′

|x − x′| d3x ′ ,

X = G

∫
ρ∗′|x − x′| d3x ′ ,

U j = G

∫
ρ∗′v′ j

|x − x′| d3x ′ ,

W jk = G

∫
ρ∗′(v′ jv′k − 1

2U ′δ jk
) + p′δ jk

|x − x′| d3x ′ ,

χ jk = G2
∫

ρ∗
1ρ∗

2

(
n j

1 − n j
12

)(
nk

2 + nk
12

)
S2

d3 y1d3 y2

− G2
∫

ρ∗
1ρ∗

2

(
n j

12nk
12 − δ jk

)
Sr12

d3 y1d3 y2 .

The potentials are evaluated at time t and position x; the sources are evaluated at the same time but at po-
sition x′. We use the notation r1 := x − y1, r1 := |r1|, n1 := r1/r1 (and similarly for r2, r2, and
n2), as well as r12 := y1 − y2, r12 := |r12|, and n12 := r12/r12, in which y1 and y2 are inte-
gration variables. We also have S := r1 + r2 + r12, and the trace ofχ jk is given by

χ = −1

2
U 2 + G

∫
M

ρ∗′U ′

|x − x′|d3x ′ .
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From Eq. (7.23) we find that the potentials give rise to the spacetime metric

g00 = −1 + 2

c2
U + 2

c4

(
ψ − U 2 + 1

2

∂2 X

∂t2

)
− 4G

3c5

...
I kk(t) + O(c−6) , (7.104a)

g0 j = − 4

c3
U j + O(c−5) , (7.104b)

g jk = δ jk

[
1 + 2

c2
U + 2

c4

(
ψ + U 2 − 2V + 1

2

∂2 X

∂t2

)]

+ 4

c4

(
W jk + χ jk

)
− 2

G

c5

...
I 〈 jk〉(t) + O(c−6) . (7.104c)

This metric is too accurate for most of our purposes. As we indicated back in Sec. 7.1.3,
in order to describe the slow motion of a weakly gravitating system accurately through 1pn

order, we require g00 to order c−4, g0 j to order c−3, and g jk to order c−2. For this application
our previous expressions can therefore be truncated to

g00 = −1 + 2

c2
U + 2

c4

(
ψ − U 2 + 1

2

∂2 X

∂t2

)
+ O(c−5) , (7.105a)

g0 j = − 4

c3
U j + O(c−5) , (7.105b)

g jk = δ jk

(
1 + 2

c2
U

)
+ O(c−4). (7.105c)

This metric forms the basis of what is known as post-Newtonian theory. Chapters 8 through
10 will be devoted to the details and many applications of this approximation to general
relativity.

We have previously indicated that the c−5 term in g00 is a coordinate artifact that has no
impact on the physics of our gravitating system. Because it depends only on time, this term
may in fact be removed by a transformation of the time coordinate given by

t = t ′ − 2G

3c5
Ïkk(t ′) + O(c−7) . (7.106)

It is a simple exercise to show that the time-time component of the transformed metric,
expressed in terms of the new time t ′, no longer contains a term at order c−5; the other
components of the metric are not affected by the transformation. It should be noted that the
transformed coordinates are no longer harmonic; the c−5 term must stay if we insist on using
harmonic coordinates. A more careful calculation reveals that the transformation generates
non-trivial terms in g00 at order c−7, or at 2.5pn order; these must then be combined with
other 2.5pn terms in order to give a correct description of radiation-reaction effects. We
return to this theme in Chapter 12.

Box 7.6 Post-Minkowskian theory and the slow-motion approximation

The advantages of incorporating a slow-motion condition within post-Minkowskian theory should be pretty
clear by now, quite apart from the physical relevance of slowmotion within a weak-field context. Had we not
expanded the various retarded potentials in powers of c−1 right from the start, we would have been faced
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with the need to evaluate fully retarded potentials such as∫
ρ∗(t − |x − x′|, x′)

|x − x′| d3x ′ ,∫
ρ∗(t − |x − x′|, x′)

|x − x′|
ρ∗(t − |x − x′| − |x′ − x′′|, x′′)

|x′ − x′′| d3x ′d3x ′′ ,∫
M

1

|x − x′|∂
′
j

ρ∗(t − |x − x′| − |x′ − x′′|, x′′)
|x′ − x′′|

× ∂ ′
k

ρ∗(t − |x − x′| − |x′ − x′′′|, x′′′)
|x′ − x′′′| d3x ′d3x ′′d3x ′′′ ;

these expressions are the fully retarded analogues ofU ,
∫

ρ ′∗U ′|x − x′|−1d3x ′, andχ jk , respectively.
Such potentials lead to hopeless complications. Even a relatively simple potential, such as thefirst one listed

above, leads todifficult computationsbecauseof theneed toaccount for the retardation condition. Examples of
such complexities are known in Maxwell’s theory, in which the evaluation of the retarded potential is difficult
even for the simple case of a single point charge (remember the Liénard–Wiechert potentials?). The non-
linear potentials are even more challenging, as they involve nested retardation conditions; such potentials do
not occur in electromagnetism, because of the linearity of Maxwell’s equations.
In the early 1960s, PeterHavas and JoshuaGoldberg, togetherwith their students and collaborators,worked

on post-Minkowskian theory in order to study gravitational radiation, but they chose not to incorporate the
slow-motion condition. Very quickly they ran into the difficulties noted above, and as a result, they were
unable to go beyond the first iteration of the relaxed field equations. And even for the first-iterated po-
tentials, they were able to evaluate quantities like the retarded Newtonian potential only for specific mo-
tions, such as circular orbits, where mathematical techniques from electrodynamics were available. In the
1970s, Havas’s student Arnold Rosenblum worked on obtaining the second iteration, but progress was ex-
tremely slow, andhis untimely death in 1991 essentially brought this program to an endwithout any definitive
conclusion.

7.4 Second iteration: Wave zone

Our final task in this chapter is to obtain expressions for the second-iterated potentials when
the field point x is in the wave zone, where r := |x| > R.

7.4.1 Near-zone contribution to potentials

Equations (7.32) give us formal expressions for the potentials hαβ

N evaluated in the wave
zone. Recalling our discussion of Sec. 7.2.3, in which we observed that each successive
multipole moment brings an additional factor of vc/c to the post-Newtonian ordering,
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we have that

h00
N = 4G M

c2r︸ ︷︷ ︸
0+1pn

+ 2G

c2
∂ jk

[I jk(τ )

r

]
︸ ︷︷ ︸

1pn

− 2G

3c2
∂ jkn

[I jkn(τ )

r

]
︸ ︷︷ ︸

1.5pn

+ · · · , (7.107a)

h0 j
N = − 2G

c3

(n × J) j

r2︸ ︷︷ ︸
1pn

− 2G

c3
∂k

[
İ jk(τ )

r

]
︸ ︷︷ ︸

1pn

− G

3c3
∂kn

[
İ jkn(τ ) − 2εmjkJ mn(τ )

r

]
︸ ︷︷ ︸

1.5pn

+ · · · , (7.107b)

h jk
N = 2G

c4

Ï jk(τ )

r︸ ︷︷ ︸
1pn

− 2G

3c4
∂n

[
Ï jkn(τ ) + 4εmn( j J̇ m|k)(τ )

r

]
︸ ︷︷ ︸

1.5pn

+ · · · , (7.107c)

is a post-Newtonian expansion of the potentials that is accurate through 1.5pn order.
Recalling Eq. (7.67), we have replaced the monopole moment I = M0 – the near-zone
mass – that originally appeared in Eq. (7.32) with the total mass M , since they agree to
order c−4. We recall that M is given by Eq. (7.63), so that it contains both a 0pn rest-
mass contribution and 1pn corrections provided by the system’s total energy. We have also
replaced the near-zone angular momentum J0 by the total angular momentum J , since
these quantities agree to order c−2.

The multipole moments that appear in Eqs. (7.107) are all functions of retarded time
τ = t − r/c. Formally they must be evaluated using the first-iterated forms τ

αβ

1 for the
energy-momentum pseudotensor, but since the multipole moments occur at 1pn and 1.5pn

orders in the potentials, we may truncate τ
αβ

1 to its leading-order expression c−2τ 00 =
ρ∗ + O(c−2) and c−1τ 0 j = ρ∗v j + O(c−2). The multipole moments then take the explicit
forms

I jk(τ ) =
∫

ρ∗x j xk d3x + O(c−2) , (7.108a)

I jkn(τ ) =
∫

ρ∗x j xk xn d3x + O(c−2) , (7.108b)

J jk(τ ) = ε jab

∫
ρ∗va xbxk d3x + O(c−2) . (7.108c)

With these, our expressions for hαβ

N are complete.

7.4.2 Wave-zone contribution to potentials

We turn next to the computation of hαβ

W in the wave zone. To carry this out we in-
sert the first-iterated potentials obtained in Sec. 7.2.3 within τ

αβ

1 , and solve the re-
laxed field equations for the second-iterated potentials. By virtue of Eq. (7.52), only the
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Landau–Lifshitz pseudotensor of Eq. (7.48) makes a contribution to τ
αβ

1 . And by virtue of
our requirement of 1.5pn overall accuracy for the potentials, we find that the only relevant
piece of the first-iterated potentials is the Newtonian term in h00

W , given by

h00
W = 4G M

c2r
+ O(c−4) . (7.109)

Inserting this within Eq. (7.48), we find that the components of the energy-momentum
pseudotensor are

τ 00
1 = −7G M2

8πr4
+ O(c−2) , (7.110a)

τ
0 j
1 = O(c−3) , (7.110b)

τ
jk

1 = G M2

4πr4

(
n j nk − 1

2
δ jk

)
, (7.110c)

in which n j := x j/r .
To obtain hαβ

W we rely on the methods of Sec. 6.3.5, which work for source terms of the
form displayed in Eq. (6.98). Our first task is to decompose the effective stress tensor of
Eq. (7.110c) in terms of STF angular tensors, refer to Sec. 1.5.3. We invoke the identity
n j nk = n〈 jk〉 + 1

3δ jk and rewrite Eq. (7.110c) as

τ
jk

1 = G

4π

M2

r4

(
n〈 jk〉 − 1

6
δ jk

)
. (7.111)

This and Eq. (7.110a) are now of the form of Eq. (7.19), and we identify f 00
�=0 with − 7

2 G M2,

f jk
�=2 with G M2, and f jk

�=0 with − 1
6 G M2δ jk . In each case we have that n = 4.

The contribution to hαβ

W from each value of � is given by Eq. (6.105), which we copy
here as

hαβ

W (t, x) = 4G

c4

n〈L〉

r

{∫ R

0
ds f αβ(τ − 2s/c)A(s, r ) +

∫ ∞

R
ds f αβ(τ − 2s/c)B(s, r )

}
,

(7.112)

in which A(s, r ) = ∫ r+s
R P�(ξ )p−(n−1) dp, B(s, r ) = ∫ r+s

s P�(ξ )p−(n−1) dp, and ξ = (r +
2s)/r − 2s(r + s)/(r p). Because f αβ is a constant, it can be taken outside of each integral,
and the remaining computations are simple. For � = 0 we get

h00
W = 7

(
G M

c2r

)2(
1 − 2

r

R

)
, (7.113a)

h jk
W = 1

3

(
G M

c2r

)2

δ jk

(
1 − 2

r

R

)
, (7.113b)

and for � = 2

h jk
W =

(
G M

c2r

)2

n〈 jk〉
(

1 − 4R
5r

)
. (7.114)
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Discarding all terms involving R, as we are free to do, and adding the results, we arrive at

h00
W = 7

(
G M

c2r

)2

, (7.115a)

h jk
W =

(
G M

c2r

)2

n j nk . (7.115b)

The post-Newtonian order of these contributions to h00 and h jk is 1.5pn. To see this, we
divide each of these expressions by h00 ∼ G M/(c2r ) to obtain something proportional to
G M/(c2r ). We next incorporate the fact that the Newtonian acceleration G M/r2

c is of order
rc/t2

c , which makes G M of order r3
c /t2

c . Setting r ∼ λc = ctc, we finally get hαβ

W /h00 ∼
r3

c /(c3t3
c ) = (vc/c)3, and conclude that Eqs. (7.115) do indeed make contributions of 1.5pn

order to the gravitational potentials.
We pull everything together and summarize our results in Box 7.7. It is instructive to note

that in the limit of a static, spherically symmetric body, the results correspond precisely to
the post-Newtonian expansion of the Schwarzschild metric. This statement is established
in Exercise 7.7.

Box 7.7 Wave-zone fields

Combining Eqs. (7.107) and (7.115), we find that the wave-zone gravitational potentials are given by

h00 = 4G

c2

[
M

r
+ 1

2
∂ jk

(I jk

r

)
− 1

6
∂ jkn

(I jkn

r

)
+ 7

4

G M2

c2r2
+ · · ·

]
,

h0 j = 4G

c3

[
−1

2

(n × J) j

r2
− 1

2
∂k

( İ jk

r

)
− 1

12
∂kn

( İ jkn − 2εmjkJ mn

r

)
+ · · ·

]
,

h jk = 4G

c4

[
1

2

Ï jk

r
− 1

6
∂n

( Ï jkn + 2εmnj J̇ mk + 2εmnkJ̇ mj

r

)
+ G M2

4r2
n j nk + · · ·

]
.

The potentials are expressed in terms of n j = x j/r , and in terms of multipole moments that depend on
retarded time τ = t − r/c; overdots indicate differentiation with respect to τ . In h00 the mass term con-
tains 0pn and 1pn contributions, the quadrupole term is a 1pn contribution, and the octupole and M2

terms are 1.5pn contributions. The first two terms in h0 j are 1pn contributions, while the rest are 1.5pn.
And finally, the quadrupole term in h jk is a 1pn contribution, while the remaining terms are all 1.5pn

contributions.
We have the total gravitational mass

M =
∫

ρ∗
[

1 + 1

c2

(
1

2
v2 − 1

2
U + 


)]
d3x + O(c−4),

the total angular momentum

J =
∫

ρ∗x × v d3x + O(c−2) ,
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and the mass and current multipole moments

I jk(τ ) =
∫

ρ∗x j xk d3x + O(c−2) ,

I jkn(τ ) =
∫

ρ∗x j xk xn d3x + O(c−2) ,

J jk(τ ) = ε jab
∫

ρ∗xavbxk d3x + O(c−2) .

We recall that M and J are conserved quantities. The gravitational potentials are evaluated in the center-of-
mass frame, in which the total momentum P and center-of-mass position R are set equal to zero.
The multipole moments must be differentiated a number of times before they are inserted within the

gravitational potentials. These operations are aided by the identity

Ḟ =
∫

ρ∗ d f

dt
d3x ,

where F(t) := ∫
ρ∗(t, x) f (t, x) d3x and d f/dt = ∂t f + v j∂ j f ; this is established on the

basis of the continuity equation ∂tρ
∗ + ∂ j (ρ∗v j ) = 0, as shown back in Sec. 1.4.3. The terms involving

dv/dt are handled by invoking Euler’s equationρ∗(dv j/dt) = ρ∗∂ jU − ∂ j p + O(c−2), which
was shown in Sec. 7.3.2 to be a consequence of energy-momentum conservation.
In the far-away wave zone, where r � λc , the gravitational potentials reduce to

h00 = 4G

c2r

[
M + 1

2c2
Ï jkn j nk + 1

6c3

...
I jknn j nknn + · · ·

]
,

h0 j = 4G

c3r

[
1

2c
Ï jknk + 1

12c3

(
...
I jkn − 2εmjkJ̈ mn

)
nknn + · · ·

]
,

h jk = 4G

c4r

[
1

2
Ï jk + 1

6c

(...
I jkn + 2εmnj J̈ mk + 2εmnkJ̈ mj

)
nn + · · ·

]
.

The time-dependent piece of hαβ is dominated by the quadrupole moment of the mass distribution.

7.5 Bibliographical notes

The implementation of post-Minkowskian theory presented in this chapter is based on the
DIRE approach (Direct Integration of the Relaxed Einstein equations) of Will and Wiseman
(1996) and Pati and Will (2000 and 2001).

The fast-motion implementation of the theory reviewed in Box. 7.6 was attempted
by Goldberg, Havas, Rosenblum, and coworkers. Representative papers are Havas and
Goldberg (1962), Smith and Havas (1965), and Rosenblum (1978).
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7.6 Exercises

7.1 Show that in Eq. (7.13), the second term in the retarded expansion of h00
N is given by

the surface integral

δh00
N = 4G

c4

∮
∂M

τ 0 j d S j .

Using the first term of Eq. (7.48b) to estimate τ 0 j in the wave zone, and taking the
monopole and quadrupole contributions to h00 from Box 7.7, show that

δh00
N ∼ G2

c10

...
I jk ...

I jk

after discarding terms that depend on the cutoff radius R. Show that this makes a
contribution to h00 at 4pn order.

7.2 Verify the identities of Eqs. (7.14). Using these, verify that the odd-order terms in
Eq. (7.12) take the forms displayed in Eqs. (7.15), modulo surface terms.

7.3 In this problem we prove that at first post-Newtonian order, the integral of Eq. (7.59)
defining the total mass M is insensitive to the wave-zone aspects of the integrand. To
show this, decompose the integral into a near-zone portion r < R and a wave zone
portion r > R. Show that the ∂ j (U∂ jU ) term in the energy-momentum pseudotensor
makes a contribution

�Mnear = 7G

2c2

M2

R
to the near-zone integral. Next, use the expression of Eq. (7.110) to show that the
wave-zone contribution to the mass is given by

�Mwave = − 7G

2c2

M2

R .

Conclude that these contributions cancel out, and that the wave-zone portion of the
integral makes no essential contribution to the mass.

7.4 As we saw in Sec. 7.3.3, the Poisson equation ∇2 f = ∇2g has the solution

f = g − 1

4π

∮
∂M

(
∂ ′ j g′

|x − x′| − g′∂ ′
j

1

|x − x′|
)

d S′
j .

Show that the surface term satisfies Laplace’s equation for any point x within the
near zone.

7.5 Consider the superduperpotential of ρ∗, defined by

Y (t, x) := G

∫
ρ∗(t, x′)|x − x′|3 d3x ′ .

(a) Show that ∇2Y = 12X , where X is the superpotential.
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(b) Following the method of Box 7.3, show that the solution to ∇2Y = 12X can be
expressed as

Y (t, x) = G

∫
ρ∗(t, y)K (x; y) d3 y + Y0(t, x),

in terms of a two-point function K that satisfies ∇2 K = 12|x − y|; Y0 is a
solution to Laplace’s equation.

(c) Calculate the two-point function, and determine Y0 so that your answer for Y
agrees with its starting definition.

7.6 Show that the quadrupole-moment piece of the wave-zone potential h00 in Box 7.7 is
given explicitly by

2G

c2

(
1

c2r
Ï jk + 3

cr2
İ〈 jk〉 + 3

r3
I〈 jk〉

)
n j nk .

7.7 For a static, spherically-symmetric source, show that the wave-zone potentials given
in Box 7.7 reduce to

h00 = 4G M

c2r
+ 7

(
G M

c2r

)2

+ · · · ,

h0 j = 0 ,

h jk =
(

G M

c2r

)2

n j nk + · · ·

Verify that this corresponds to the post-Newtonian expansion of the Schwarzschild
metric in harmonic coordinates.

7.8 The total mass of a gravitating system is defined by the integral

M = 1

c2

∫
(−g)

(
T 00 + t00

LL

)
d3x .

But the mass parameter that appears in the leading-order contribution to h00 in the
wave zone is

M0 = 1

c2

∫
M

(−g)
(
T 00 + t00

LL + t00
H

)
d3x .

Both masses satisfy a conservation law, because ∂β[(−g)tαβ

H ] = 0 identically. This
problem explores whether (−g)t00

H makes a contribution to the value of the mass.
(a) Defining t̃αβ

H := (16πG/c4)(−g)tαβ

H = ∂μhαν∂νhβμ − hμν∂μνhαβ , and using the
harmonic gauge condition ∂βhαβ = 0, show that

t̃αβ

H = 2∂0hα0∂0hβ0 + 2h0(α∂2
0 hβ)0 − h00∂2

0 hαβ

− 2∂0h00∂0hαβ − hαβ∂2
0 h00 + ∂ j f jαβ ,
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where

f jαβ := 2h0(α∂0hβ) j + hk(α∂khβ) j + h j(α∂0hβ)0

− 2h0 j∂0hαβ − h jk∂khαβ − ∂0h0 j hαβ .

(b) Using this expression, show that the contribution of the harmonic energy-
momentum pseudotensor to a near-zone momentum

Pα
0 := 1

c

∫
M

τα0 d3x

and a near-zone angular momentum

Jαβ

0 := 2

c

∫
M

x [ατβ]0 d3x

comes from integrals over the surface bounding the domain of integration.
(c) Show that f j00 = ∂k(h0 j h0k − h00h jk).
(d) Using the wave-zone form of the potentials from Box 7.7, and keeping only terms

that are independent of the cutoff radius R, show that M and M0 are related by

M = M0 − 2

3

G M0

c5

...
I kk(τ ) + O(c−7) .

Show that the second term is a correction of order (vc/c)5 relative to the first
term.

7.9 This problem explores how to solve the Landau–Lifshitz formulation of the Einstein
field equations for the Schwarzschild geometry.
(a) Assuming static spherical symmetry, show that the general form of the gothic

inverse metric in Cartesian coordinates can be written in the form

g00 = N (r ) ,

g0 j = 0 ,

g jk = α(r )P jk + β(r )n j nk ,

where N , α and β are arbitrary functions of r , n j is a radial unit vector, and
P jk := δ jk − n j nk .

(b) Show that gαβ is given by g00 = N−1, g jk = α−1 P jk + β−1n j nk , and that g :=
det[gαβ] = Nα2β.

(c) Show that the imposition of the harmonic gauge condition leads to the constraint

β ′ = 2

r
(α − β) ,

where a prime indicates differentiation with respect to r . Recall that ∂ j F(r ) =
F ′(r )n j , and ∂ j nk = r−1 P jk .
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(d) Show that the three field equations that arise from the vacuum wave equation
�gαβ = (16πG/c4)ταβ in harmonic coordinates have the form

X ′ + XY + 1

r
(2X − Y ) = Q ,

XY + 1

r
(2X + Y ) = −Q ,

Z ′ + Y Z + 2

r
Z = Q ,

where

X := α′

α
, Y := β ′

β
, Z := N ′

N
,

and

Q := 1

8

(
3Y 2 − Z2 + 2Y Z + 4X Z − 4XY

)
.

Hint: One equation comes from the 00 component of the field equations, the
other two come from splitting the jk components into a piece proportional to
n j nk and another piece proportional to P jk . Use the gauge condition to simplify
your expressions.

(e) By combining the first two field equations, obtain the solutions

X = 0 or r4β2 X = c ,

where c = 0 is a constant.
(f) Choosing the solution X = 0, show that the solutions for α and β that satisfy

appropriate asymptotic conditions at r = ∞ are

α = 1 , β = 1 − a

r2
,

where a is an arbitrary constant. Find the solution for N , determine a, and verify
that the result is the Schwarzschild metric in harmonic coordinates.

(g) What is your interpretation of the second class of solutions, represented by a non-
zero value of c? Show that by combining the equation r4β2 X = c with the gauge
condition, you can eliminate α and obtain the following differential equation for
β:

W ′′ − W ′

r
= c

W ′

W 2
,

where W := r2β. Spend some time (but not too much!) trying to find a closed
form solution to this non-linear equation. (If you find one, please send it to us!)

7.10 Consider the harmonic gauge condition of Eq. (5.175), �g X (μ) = 0, which is a
scalar wave equation for the four scalar fields T , X , Y and Z . Using the metric in
Schwarzschild coordinates to calculate the operator �g , and defining T := t , X :=
rh(r ) sin θ cos φ, Y := rh(r ) sin θ sin φ, and Z := rh(r ) cos θ , show that the harmonic
condition reduces to a single differential equation for rh(r ), a Legendre equation
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of degree � = 1. Show that the solution that satisfies the condition that rh → r as
r → ∞ is given by

rh = r − 1

2
R + b

[(
r − 1

2
R
)

ln
(

1 − R

r

)
+ R

]
,

where R = 2G M/c2 and b is an arbitrary constant. What do you conclude about the
uniqueness of harmonic coordinates? (We encounter this question again in Sec. 11.1.5,
in the context of gravitational waves.) Is there a link between this and the second
class of solutions in part (g) of the previous problem?
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